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Large SenseLarge Sense--Tagged Corpora Tagged Corpora 
Are NeededAre Needed

Semantically annotated corpora needed for many tasks
– Supervised Word Sense Disambiguation
– Selectional preferences
– Lexico-semantic relations
– Topic signatures
– Subcategorization frames

Acquisition  of linguistic knowledge is one of the 
main objectives of MEANING
General “trend”
– Focus on getting more data
– As opposed to searching for better learning algorithms



Large SenseLarge Sense--Tagged Corpora Tagged Corpora 
Are NeededAre Needed

Large sense-tagged data required for supervised 
Word Sense Disambiguation
– Supervised WSD systems have highest performance
– Mounting evidence that many NLP tasks improve with more 

data (e.g. Brill, 2001), WSD is no exception
– Senseval needs training data

If we want to see Senseval-5 happening 

– Current method (paid lexicographers) has drawbacks: is 
expensive and non-trivial to launch and re-launch



How Much Training Corpora ?How Much Training Corpora ?
begin: a special case in Senseval-2 – data created by mistake!

~700 training examples
~400 test examples
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How many ambiguous words?How many ambiguous words?
English
– About 20,000 ambiguous words in the common vocabulary 

(WordNet)
– About 3,000 high frequency words (H.T. Ng 96)

Romanian: 
– Some additional 20,000 

Hindi
French 
….
7,000 different languages! 
– (Scientific American, Aug. 2002)



Size of the problem?Size of the problem?

About 500 examples / ambiguous word
About 20,000 ambiguous words / language
About 7,000 languages

dare to do the math…



How much annotated data How much annotated data 
are available?are available?

Line, serve, interest corpora (2000-4000 instances / 
word)
Senseval-1 and Senseval-2 data (data for about 100 
words, with 75 + 15n examples / word)
Semcor corpus (corpus of 190,000 words, with all 
words sense-annotated)
DSO corpus (data for about 150 words, with ~500 
– 1000 examples / word)

See senseval.org/data.html for complete listing



Are we at a dead end?Are we at a dead end?

Tagging pace with small groups of 
lexicographers cannot match the data request
About 16 man-years needed to produce data 
for about 3,000 English ambiguous words 
(H.T.Ng)

•Need to turn towards other, non-traditional  

approaches for building sense tagged corpora



Methods for Building Methods for Building 
Semantically Annotated CorporaSemantically Annotated Corpora

Automatic acquisition of semantic 
knowledge from the Web
– Substitution of words with monosemous 

equivalents (1999)
– One of the main lines of experiments in 

Meaning



Methods for Building Methods for Building 
Semantically Annotated CorporaSemantically Annotated Corpora

Bootstrapping
– Co-training:

See over- and under- training issues (Claire Cardie, EMNLP 2001) 

– Iterative assignment of sense labels 
(Yarowsky 95)

– Assumes availability of some annotated data to 
start with 



Methods for Building Methods for Building 
Semantically Annotated CorporaSemantically Annotated Corpora

Open Mind Word Expert
– Collect data over the Web
– Rely on the contribution of thousands of Web 

users who contribute their knowledge to data 
annotation 

A different view of the Web

The Web as Collective Mind



Open Mind Word Expert Open Mind Word Expert 
(OMWE)(OMWE)

Different way to get data: from volunteer 
contributors on the web
– Is FREE (assuming bandwidth is free)
– Part of Open Mind initiative (Stork, 1999)

– Other Open Mind projects:
1001 Answers
CommonSense 
All available from http://www.teach-computers.org



Data / Sense InventoryData / Sense Inventory

– Uses data from Open Mind Common Sense 
(Singh, 2002), Penn Treebank, and LA Times 
(part-of-speech tagged, lemmatized)

– British National Corpus, American National 
Corpus will be soon added

– WordNet as sense inventory
Fine grained
Experimenting with clustering based on confusion 
matrices



Active LearningActive Learning

Increased efficiency
STAFS and COBALT
– STAFS = semantic tagging using instance based 

learning with automatic feature selection
– COBALT = constrained based language tagger

– STAFS ∩ COBALT 
Agree 54.5% of the times
82.5 / 86.3% precision (fine/coarse senses)



OMWE:  http://teachOMWE:  http://teach--computers.orgcomputers.org



Making it EngagingMaking it Engaging
Our slogan: “Play a game, make a difference!”
Can be used as a teaching aid (has special 
“project” mode):
– Help introduce students to WSD, lexicography
– Has been used both at university and high school level

Features include:
– Scores, Records, Performance graphs, optional 

notification when your record has been beaten
– Prizes
– Hall of Fame



Tagging for  FameTagging for  Fame



Volume & QualityVolume & Quality
Currently (04/04/2003), about 100,000 tagging acts
To assure quality, tagging for every item is collected 
twice, from different users
– Currently, only perfect agreement cases are admitted into 

the corpus
– Preprocessing identifies and tags multi-word expressions 

(which are the simple cases)
ITA is comparable with professional tagging:
– ~67% on first two tags 

single word tagging collected through OMWE+ 
multi-word tagging automatically performed

– Kilgarriff reports 66.5% for Senseval-2 nouns on first two 
tags



INTERESTingINTERESTing ResultsResults
According to Adam Kilgarriff (2000, 2001) replicability
is more important than inter-annotator agreement
A small experiment: re-tag Bruce (1999) “interest” 
corpus: 
– 2,369 starting examples
– Eliminate multi-word expressions (about 35% - e.g. “interest 

rate”) 1,438 examples
– 1,066 items with tags that agree 74% ITA for single words, 

83% ITA for entire set
– 967 items that have a tag identical with Bruce
– 90.8% replicability for single words
– 94.02% replicability for entire set
– Kilgarriff (1999) reports 95%



Word Sense Disambiguation Word Sense Disambiguation 
using OMWE corpususing OMWE corpus

Additional in-vivo evaluation of data quality
Word Sense Disambiguation:
– STAFS 
– Most frequent sense
– 10-fold cross validation runs



Word Sense Disambiguation Word Sense Disambiguation 
ResultsResults

Intra-corpus experiments: 280 words with data 
collected through OMWE

Word Size MFS WSD
activity 103 90.00% 90.00%
arm 142 52.50% 80.62%
art 107 30.00% 63.53%
bar 107 61.76% 70.59%
building 114 87.33% 88.67%
cell 126 89.44% 88.33%
chapter 137 68.50% 71.50%
child 105 55.34% 84.67%
circuit 197 31.92% 45.77%
degree 140 71.43% 82.14%
sun 101 63.64% 66.36%
trial 109 87.37% 86.84%



Word Sense Disambiguation Word Sense Disambiguation 
ResultsResults

Training        Precision Error rate
examples baseline WSD reduction
any 63.32% 66.23% 9%
> 100 75.88% 80.32% 19%
> 200 63.48% 72.18% 24%
> 300 45.51% 69.15% 43%

The more the better!
- agrees with the conclusions of some of the MEANING experiments
- agrees with previous work (Ng 1997, Brill 2001)



Word Sense Disambiguation Word Sense Disambiguation 
ResultsResults

Inter-corpora WSD experiments
Senseval training data VS. Senseval+OMWE
– Different sources different sense distributions

          Senseval     Senseval+OMWE
art 60.20% 65.30% 61.20% 68.40%
church 62.50% 62.50% 67.20% 67.20%
grip 54.70% 74.50% 62.70% 70.60%
holiday 77.40% 83.90% 77.40% 87.10%
…..
Average 63.99% 72.27% 64.58% 73.78%



Word Sense Disambiguation Word Sense Disambiguation 
ResultsResults

Sense distributions have strong impact on 
precision
MEANING experiments
– 20% difference in precision for data with or 

without Senseval bias
– We consider evaluating OMWE data under 

similar settings (+/- Senseval bias) 



Summary of BenefitsSummary of Benefits

http://teach-computers.org
A Different View of the Web:
WWW ≠ large set of pages
WWW = a way to ask millions of people
– Particularly suitable for attacking tasks that people find 

very easy and computers don’t

OMWE approach: 
– Very low cost
– Large volume (always-on, “active” corpus)
– Equally High Quality



How OMWE can relate to How OMWE can relate to 
MEANING efforts?MEANING efforts?

Provide starting examples for bootstrapping 
algorithms
– Co-training
– Iterative annotation (Yarowsky 95)

Provide seeds that can be used in addition to 
WordNet examples for generation of sense 
tagged data:
– Web-based corpus acquisition



A ComparisonA Comparison
Hand tagging  Open Mind

with lexicographers Substitution Bootstrapping Word Expert
Automatic NO YES YES-SEMI NO-SEMI
Human intervention YES NO YES YES
Expensive? YES NO NO NO
Time consuming? YES NO SEMI SEMI
Features: local YES NO(?) YES YES
Features: global YES YES YES YES
Uniform coverage? MAYBE NO MAYBE MAYBE

•Which method to choose?

•The best choice may be a mix!



How MEANING efforts can How MEANING efforts can 
help our own WSD work?help our own WSD work?

Sense tagged data
Selectional preferences
Use ExRetrieve to suggest sense labels
– Speed-up OMWE
– “clean” ExRetrieve examples

Cross-validation of (semi)automatic sense  
labeling experiments



Sneak Preview: OMWE 2.0Sneak Preview: OMWE 2.0

Create data for other languages:
– Romanian, Hindi, etc.

Create data for multi-lingual tagging 
(translations)
– Multi-lingual tagging

A slightly improved version of current 
English OMWE
Should provide data for three tasks in 
Senseval-3
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