
Robust Document Representations for
Hyperpartisan and Fake News Detection

Author: Talita Anthonio, MA

Advisors: Dr. Rodrigo Agerri, Prof. Dr. Malvina Nissim

Erasmus Mundus Master in Language and Communication Technologies

Final Thesis

June 12, 2019

Department: Computer Systems and Languages, University of the Basque Country
UPV/EHU

Hyperpartisan News Detection ii/80

Hyperpartisan News Detection iii/80

Abstract
Hyperpartisan news is characterized by extremely one-sided content from a left-wing or
right-wing political perspective. This thesis is concerned with automatically detecting
such news through supervised text classification. We work with data from the recent

shared task on hyperpartisan news detection (SemEval-2019 Task 4). We use two
classification techniques: Support Vector Machines (SVMs) and Recurrent Neural

Networks. We experiment with document representations using bag-of-words,
bag-of-clusters, word embeddings and contextual character-based embeddings. We also
try to improve our classifiers by adding local features, such as POS n-grams, stylistic

features and the sentiment of a text. Our aim is to build robust classifiers across tasks
related to fake news, for different domains and text genres. Although local features help

to model the task in-domain, this thesis shows that dense document representations work
better across domains and tasks. We obtain very competitive results in the hyperpartisan

news detection task and state-of-the-art results in an out-of-domain evaluation on fake
news.

keywords: hyperpartisan news detection, fake news, supervised text classification

Hyperpartisan News Detection iv/80

Contents

1 Introduction 1
1.1 Hyperpartisan News . 2
1.2 Research Questions . 4
1.3 Contributions . 5

2 Related Work 7
2.1 Hyperpartisan Content Detection . 7

2.1.1 Automatic Detection . 7
2.1.2 Manual Detection . 8

2.2 Fake News Detection . 9
2.2.1 Feature-based Supervised Learning 10
2.2.2 Supervised Learning with Neural Networks 11

2.3 Biased Language Detection . 13
2.3.1 Summary . 14

3 Data 15
3.1 The SemEval-2019 Task 4 Hyperpartisan News Dataset 15

3.1.1 By-publisher . 15
3.1.2 By-article . 16

3.2 By-publisher Subset . 18
3.3 Fake News Dataset . 19

4 Document Representations 22
4.1 Bag-of-words . 22

4.1.1 Features . 23
4.2 Bag-of-clusters . 24

4.2.1 Data and Methods . 25
4.3 Word Embeddings . 27

4.3.1 Materials . 27
4.3.2 Word2vec . 28
4.3.3 GloVe . 29
4.3.4 FastText . 29

4.4 Contextual Character-based Embeddings 30
4.4.1 Flair Embeddings . 30
4.4.2 Methods . 31

4.5 Summary . 32

5 Experimental Set-up 33
5.1 General Set-up . 33
5.2 Baseline and Evaluation Metrics . 34
5.3 Approach 1: Classi�cation with a SVM . 35

Hyperpartisan News Detection v/80

5.3.1 Feature Selection for Document Representations 35
5.3.2 Pre-processing and Parameter Tuning 36

5.4 Additional Features for the SVMs . 37
5.4.1 Sentiment Features . 37
5.4.2 Linguistic Features . 38
5.4.3 Stylistic Features . 38

5.5 Approach 2: Classi�cation with Recurrent Neural Networks 39
5.5.1 Feature Selection . 40

6 Model Development Results 41
6.1 Document Representations in SVMs . 41

6.1.1 Bag-of-words . 41
6.1.2 Bag-of-clusters . 42
6.1.3 Word Embeddings . 44
6.1.4 Overview of the Best Classi�ers . 44

6.2 Additional Features for SVM . 46
6.2.1 Linguistic Features . 46
6.2.2 Sentiment Features . 47
6.2.3 Stylistic Features . 47

6.3 Adding Local Features to Document Representations with SVM 48
6.3.1 Bag-of-words . 48
6.3.2 Bag-of-clusters . 49
6.3.3 Word Embeddings . 50

6.4 Experiments with Recurrent Neural Networks 51
6.4.1 Best Classi�er . 53

6.5 Summary . 54

7 In-domain Results 55
7.1 Results with Support Vector Machines . 55

7.1.1 Results on the By-article Test Set 55
7.1.2 Results on the By-publisher Test Set 56

7.2 Results with Recurrent Neural Networks 57
7.3 Best Classi�er . 58

7.3.1 Summary . 59

8 Across-datasets and Out-of-domain Evaluation 60
8.1 Across-datasets Evaluation on Hyperpartisan using SVM 60

8.1.1 Training on By-article . 60
8.1.2 Training on By-publisher . 61

8.2 Across-datasets Evaluation on Hyperpartisan using Neural Networks 62
8.3 Out-of-domain Evaluation on Fake News 63

8.3.1 Results . 63
8.4 Summary . 65

Hyperpartisan News Detection vi/80

9 Discussion 66
9.1 Best Classi�er . 66

9.1.1 Common Confusions . 66
9.1.2 Important Features . 66

9.2 In-domain Results . 70
9.3 Results Across-datasets . 71
9.4 Out-of-domain Results . 71

10 Conclusion 73
10.1 Summary . 73
10.2 Closing Remarks . 74

Hyperpartisan News Detection vii/80

List of Figures

1 An example of an article with hyperpartisan content from the by-article
training set. 17

2 An example of a hyperpartisan text (right-leaned) that is not about politics. 19
3 An example of a fake news article from the CelebrityNews dataset of P�erez-

Rosas et al. (2018). 20
4 An intuitive illustration of bag-of-clusters. The left graph represents a simpli�ed

word embedding model. The graph on the right shows the result of applying a
cluster algorithm on the word embeddings. The table presents a �ctive example
of two documents vectorized as bag-of-clusters. 25

5 The procedure of creating the contextual string embedding for the word
Washington from Akbik et al. (2018, p.4). 31

6 Three graphs showing the performance of the best classi�er with neural
networks over 120 epochs. 54

7 The top 30 most important features for predicting hyperpartisan (positive
values) and mainstream news (negative values). 68

Hyperpartisan News Detection viii/80

List of Tables

1 The distribution of hyperpartisan and bias labels our by-publisher subset. . 17
2 Corpus statistics of the datasets that we used for classi�cation purposes. . 18
3 Corpus statistics of the datasets of P�erez-Rosas et al. (2018) that we used

for out-of-domain evaluation. 19
4 The frequency distribution of the Top 20 most frequent publishers of hyper-

partisan news in the by-publisher subset.
. 21

5 The frequency distribution of the Top 20 most frequent publishers of main-
stream news in the by-publisher subset.
. 21

6 The frequency distribution of the Top 20 most frequent publishers of hyper-
partisan news in the by-article training set. 21

7 The frequency distribution of the Top 20 most frequent publishers of main-
stream news in the by-article training set. 21

8 A simpli�ed illustration of bag-of-word uni-grams for two documents. . . . 23
9 A description of the clusters that we used to represent documents as bag-

of-clusters. All clusters were applied on word embeddings trained with
Word2vec. The amount of words represent the number of words that occur
in each cluster �le in either the wikipedia, hyperpartisan or fake news cluster
�les. 26

10 An overview of the word embeddings that we used. All word vectors had a
dimension of 300. We show the size in million or billion words. 28

11 The performance of the baseline system that only uses the negative sen-
timent of a text as features. The system is trained on the complete by-
publisher training set. 34

12 The values over which we performed the grid-search to tune the parameters
of the tf-idf vectorizer and the C-parameter of the SVM. 37

13 The Top 5 bag-of-word classi�ers trained on the by-article training set and
evaluated via 5-fold cross-validation. 42

14 The Top 5 bag-of-word classi�ers trained on the by-publisher subset and
evaluated via 5-fold cross-validation. 42

15 The Top 5 results obtained with Wikipedia clusters on 5-fold cross-validation
using default parameter settings. 43

16 The Top 5 results obtained with fake/legitimate news clusters on 5-fold
cross-validation using default parameter settings. 43

17 The Top 5 results obtained with hyperpartisan/non-hyperpartisan clusters
on 5-fold cross-validation using default parameter settings. 44

18 Results for the pre-trained word embeddings for the models that we trained
on the by-article training set via 5-fold cross-validation. 45

19 Results for the pre-trained word embeddings for the models that we trained
on the by-publisher subset via 5-fold cross-validation. 45

Hyperpartisan News Detection ix/80

20 The Top 5 results on 5-fold cross-validation of the SVM classifers using POS
features (linguistic features) with tf-idf weighting. 47

21 The Top 5 most predictive sentiment features for the classi�ers that we
trained and evaluated via 5-fold cross-validation. All features were computed
with VADER (Hutto and Gilbert, 2014). 47

22 The Top 5 most predictive stylistic features for the classi�ers that we trained
and evaluated via 5-fold cross-validation. The usage of assertives was rep-
resented by binary representation. 48

23 The results of the models that use pre�xes and additional features on 5-fold
cross-validation using the by-article training data. 49

24 The results of the models that use pre�xes and additional features on 5-fold
cross-validation using the by-publisher subset. 49

25 The results of the models that use additional features and bag-of-clusters
on 5-fold cross-validation on the by-article training set. 50

26 The results of the models that use additional features and bag-of-clusters
on 5-fold cross-validation on the by-publisher subset. 50

27 The scores on 5-fold cross-validation for models that use FastText pre-
trained word embeddings and additional features trained and evaluated on
by-article training. 51

28 The scores on 5-fold cross-validation for models that use FastText pre-
trained word embeddings (without stop words) and additional features trained
and evaluated on the by-publisher subset. 52

29 The performance of the classi�ers that use recurrent neural networks on
evaluated on 10% of the by-article training data and trained on 80% of the
by-article training set. 52

30 The performance of the best classi�er over �ve runs that use recurrent neural
networks on predicting hyperpartisan evaluated on 10% of the by-article
training data and trained on 80% of the by-article training set. 53

31 The performance of the best SVM classi�ers trained on the by-article train-
ing set and evaluated on the by-article test set. 56

32 The performance of the best bag-of-words, bag-of-clusters and word em-
bedding model trained on by-publisher training and evaluated on the by-
publisher test set. 57

33 The results on the by-article test set of the classi�er using Flair and GloVe
embeddings using Recurrent Neural Networks. 58

34 Results the by-article training data on 5-fold cross-validation showing the
e�ects of the pre-processing procedures of the best classi�er on the by-article
test set. 59

35 Results of the previous best classi�er and the current best classi�er on the
by-article test set. We also show the results of the winning system in the
competition. 59

Hyperpartisan News Detection x/80

36 The results of the best SVM classi�ers trained on the by-article training
set and evaluated on the by-publisher test set. The �rst row represents the
scores of best system on the by-article test set from the in-domain evaluation
experiments, of which we show the performance on the by-publisher test set
in this table. 61

37 The results of the best SVM classi�ers trained on the by-publisher subset
and evaluated on the by-article test set. 62

38 The across-datasets performance of the best neural network classi�er using
the Flair and GloVe embeddings. The classi�er was trained on the by-article
training set and evaluated on the by-publisher test set. 63

39 The results on 5-fold cross-validation of the classi�ers trained on the Fake-
NewsAMT dataset of P�erez-Rosas et al. (2018). Each classi�er used either
one of the best features from the best bag-of-words, bag-of-clusters or word
embeddings classi�er that we developed for fake news detection. 64

40 Out-of-domain evaluation on the CelebrityNews dataset of P�erez-Rosas et al.
(2018). 64

41 Results of the SVM classi�ers using the best document representations of
our systems on the by-article test set. The systems are trained on the Fak-
eNewsAMT data and evaluated on the CelebrityNews dataset from P�erez-
Rosas et al. (2018). 64

42 The performance of our best classi�er on hyperpartisan news detection, eval-
uated on the by-article test set. The classi�er scored an accuracy of 0.7866. 67

43 The three most important clusters for predicting hyperpartisan news (left:
most important, right: less important). The three clusters were also the
most important features to detect hyperpartisan news. 69

Hyperpartisan News Detection 1/80

1 Introduction

Respecting the truth and the public right to the truth is the �rst obligation
of journalists. A journalist, in recognition of this commitment, defends the
principles of freedom and the right to comment and critique, while �nding and
reproducing the news properly. A journalist reports only the facts obtained
from a trustworthy source, he does not suppress important information and he
does not falsify material. He only uses fair methods to �nd information, photos
and other materials. In case he accidentally publishes news which later prove
to be wrong, he will correct it.
-The International Federation of Journalists (1954).

Recently, there has been a radical change in the way news is being consumed and
produced in society. Namely, social media such as Twitter and Facebook have become
popular places for people to read, distribute and discuss news. Unlike traditional media
outlets, anyone can register as a news publisher on social media. Consequently, news
publishers that do not obey the standards of professional journalism, which are formulated
in the quote, can also produce and distribute news via social media (Ribeiro et al., 2018).
One e�ect of this is the production of news articles containing false or biased information.
This becomes problematic when such news stories a�ect the political opinions of readers,
which may in turn inuence the outcome of political elections. This is likely to happen
because of the crucial role that news has in shaping citizens opinions, choices and thoughts.

Besides, a recent study of Bhatt et al. (2018) showed that there were a large amount
of biased and false news websites during the presidential elections of 2016. The fact that
a large proportion of those websites disappeared after the elections suggests that these
news articles may have been speci�cally aimed at inuencing the outcome of the elections.
Furthermore, another study revealed that many supporters of Hillary Clinton received their
news from mainstream sources, such as theNew York Times and The Washington Post,
while Trump supporters were more exposed to publishers of right-leaning biased news on
social media (Marwick and Lewis, 2017).

Unfortunately, social media users are often unaware that they read biased or fake news.
One reason could be that publishers of legitimate news are also active in social media
websites. This makes it di�cult for users to distinguish between legitimate and illegitimate
news publishers. A possible solution would therefore be to monitor and limit the production
of illegitimate news, such as done in traditional news media by scholars and watchdog
groups (Ribeiro et al., 2018). However, this is a challenging, perhaps even unsolvable
task on social media, where large amounts of textual contents are spread globally every
second. A more e�ective solution might therefore be to build a computational systems that
automatically detect whether a news article relies on false information, or uses subjective
language that expresses approve or disapproval towards a political approach. The latter
will be the main purpose of this thesis.

Hyperpartisan News Detection 2/80

1.1 Hyperpartisan News

The most popular term to refer to politically biased news is hyperpartisan news. It has been
de�ned as a type of news that is characterized by extremely one-sided content (Kiesel et al.,
2019). The term was �rst mentioned in an article from the New York times Magazine1,
where it was formulated as a style of reporting that departs from the traditional notions of
journalistic balance by providing a biased picture of one side of the political debate. The
term was coined in context of the US Elections from 2016, implying bias that was either
left-leaned, showing overt support of the Democratic Party, or right-leaned, which expresses
support to the Republican Party. Hyperpartisan news has additionally been characterized
as a speci�c type of fake news. Fake news is the kind of news in social media that spreads
more successfully than the others and are typically extremely one-sided (hyperpartisan),
inammatory, emotional and composed of untruths (Potthast et al., 2017). Although
related, we believe that hyperpartisan news and fake news are two distinct types of news.
Reporting facts in a subjective manner is not the same as reporting false facts. However,
since the two types of news report on similar topics and use similar styles to do so, we
surmise that it is likely that features for hyperpartisan news detection are helpful for fake
news detection.

In order to further illustrate what hyperpartisan news is, we provide an example of an
article that is left-learning below.

President Donald Trump urged Congress Thursday morning to launch an in-
vestigation of the news media, wondering online why so much of our news is
just made up. He did not single out a speci�c story or media outlet
that he believed to be guilty of inaccurate reporting. Trump's fake
news complaints have been a staple of his political rhetoric, a label
he often applied to stories that feature negative reporting about him
or his presidency. Most recently, Trump has railed against reports that have
characterized his administration's hurricane recovery e�orts in Puerto Rico as
inadequate, as well as against an NBC News report that Secretary of State Rex
Tillerson called the president a moron over the summer and nearly resigned.

The phrases in the example, especially the ones in bold, are used to express disapproval
of Donald Trump and his presidency. In particular, the underlying message of this article
seems to be that Donald Trump is pretending that the negative reports about him or his
presidency are examples of fake news. The author seems to make this point stronger by
mentioning that Trump was not able to come up with an example to prove his statement,
i.e., \He did not single out a speci�c story or media outlet that he believed to be guilty of
inaccurate reporting". Moreover, the author uses certain bias-laden words to strengthen
her point, for instance by using the wordsurged and railed.

Following this, one approach that could be used to detect hyperpartisan news automat-
ically would be to develop a system that relies on a list of words that are frequently used

1J. Herman. (2016). Inside Facebook's (Totally Insane, Unintentionally Gigantic Hyperpartisan)
Political-Media Machine. (24 August 2016). https://nyti.ms/2k82R8I

Hyperpartisan News Detection 3/80

to express approval or disapproval towards an entity. Still, this method is only probable to
be e�ective when the lexicon is large and when it is used by a system that is able to detect
varieties of the same word. Even then, the lexicon is likely to be non-exhaustive. Another
approach could therefore be to train a classi�er in such a way that it knows which words
occur more frequently in hyperpartisan news than in mainstream news by representing
documents as bag-of-words. However, language is rich, and people can use di�erent words
to express disapproval or support towards an entity. Thus, when a system is trained to
detect hyperpartisan news by means of a speci�c set of words, this system may not work
well when it sees words that are not in the vocabulary of the training data. Moreover, even
within hyperpartisan news, there are di�erences in the way how writers express bias. Let
us consider another example:

Donald Trump ran on manybraggadocios and largely unrealistic campaign
promises. One of these promises was to be the best, the hugest, the most
competent infrastructure president the United States has ever seen. Trump
was going to �x every infrastructure problem in the country and Make America
Great Again in the process. That is, unless you are a brown American. In that
case, you're on your own, even after a massive natural disaster like Hurricane
Maria.

Similar to the other example, the author uses certain adjectives to express disapproval
of trump, such asbraggadocious. However, these adjectives did not occur in the previous
example. Thus, it would perhaps be more e�ective to represent documents in such a
way that words are grouped by their purpose or general topic, by using knowledge from
additional sources than the training data. Ideally, a system that detects hyperpartisan news
should be able to know thatDonald Trump, Hillary Clinton , Barack Obamaare political
�gures and that the words braggadociousand unrealistic are used to express disapproval.

A more sophisticated solution to detect hyperpartisan news would therefore be to use
denser representations than bag-of-words, by grouping words with similar meanings and/or
words that come from the same topic together in a cluster. On the other hand, this could
cause us to miss important information. Furthermore, the extent to which we succeed
in grouping those words may depend too much on the quality of the resources that are
necessary to e�ciently group those words. Thus, it is a challenging task to determine
which features we should select.

In related studies about the automatic detection of linguistic bias in texts, the problem
was usually tackled by building systems that relied on a large combination of local features
from the documents, such as: the overall sentiment, the readability, the usage of certain
POS n-grams and the occurrence of speci�c bias-laden words (see Chapter 2). These
features could be interesting for hyperpartisan news detection as well, especially when
they would be combined with features to capture sarcasm in documents. Nonetheless,
because of the stylistic di�erences between hyperpartisan news articles, we believe that
systems relying on such features will not work well on all texts. For instance, the second
example that we showed contains more passages that indicate a negative sentiment or
sarcasm than the previous article. Still, it could be the case that these features are helpful

Hyperpartisan News Detection 4/80

when they are used in combination with an e�ective, dense document representation of a
text. There are however, to the best of our knowledge, no studies that experimented with
this combination of features.

1.2 Research Questions

The purpose of this research is to build a classi�er that automatically identi�es for a given
news document whether it is an instance of hyperpartisan news or not. In particular,
we approach this task by building a supervised machine learning classi�er that learns
appropriate textual features to discriminate between hyperpartisan and legitimate news.
Our research can therefore be motivated by the following general question:Is it possible to
build an accurate supervised machine learning classi�er that detects hyperpartisan news?.

In the previous section, we surmised that the best way to approach this task would
be to �nd an e�ective method to vectorize documents, rather than building systems that
rely on a combination of local features. Therefore, the �rst step in answering our main
research question will be to �nd the most e�ective document representation technique to
vectorize documents for hyperpartisan news detection. We therefore formulate our �rst
research question as:

RQ1: What is the most e�ective method to vectorize documents for hyperpar-
tisan news detection?

In order to answer this question, we will try to create a simple classi�er that only relies on
one document representation technique, for instance by averaging the word embeddings in a
document. Despite its simplicity, we try to build a system that receives competitive results
on a test set from a shared task on hyperpartisan news detection. However, some document
representation techniques are perhaps more powerful when they are used in combination
with other document representation techniques or when they are used together with local
features, such as the sentiment or the readability of a text. Because of this, the next step
of our study will be to add helpful local features to the classi�ers that rely on one of the
document representations techniques that we use. In this way, our second research question
can be formulated as:

RQ2: Can we improve our classi�ers by combining document representation
techniques and/or by adding local features?

In addition to building an accurate classi�er on the test set of the competition, our aim is
also to build a classi�er that performs well on a di�erent dataset of hyperpartisan news.
In particular, we attempt to create a classi�er that is able to perform similarly well across
datasets, rather than being speci�cally tuned to one training set. In other words, we
aim to build a system that provides robust results across datasets of hyperpartisan news.
Therefore, we formulate the third research question as:

RQ3: Is it possible to build a classi�er for hyperpartisan news detection that is
robust enough to perform well across di�erent datasets of hyperpartisan news?

Hyperpartisan News Detection 5/80

Finally, we try to take robustness one step further by evaluating our most promising systems
on a di�erent but related task, without using speci�c feature tuning on this task. The task
that we select for this purpose is fake news detection. We have mentioned in the previous
section that fake news is, to a certain extent, related to hyperpartisan news. Because of
this, it would be interesting to develop a system that is able to detect both types of news.
Thus, our last research question can be motivated by:

RQ4: Is it possible to build classi�ers for hyperpartisan news detection that
can be applied to other related tasks?

We will answer our research questions by evaluating the performance of our systems
through di�erent set-ups. Moreover, we will experiment with di�erent document represen-
tation techniques to address the sparsity problem in text classi�cation. More speci�cally,
we will work with dense word representations such as word embeddings that aim to com-
pute semantic relatedness between words. These representations also help to tackle the
out-of-vocabulary words problem given that they are pre-trained on large amounts of un-
labelled data which contains a huge vocabulary size. Despite the promising aspects of
these techniques, there is, to the best of our knowledge, few or no work available that has
experimented with these type of semantic features for hyperpartisan/fake news detection.
We therefore experiment with di�erent types of document and word representations and
highlight the extent to which they are robust and e�ective for hyperpartisan news.

1.3 Contributions

The main contributions of this thesis are the following:

� We provide a systematic comparative analysis of document representation techniques
for hyperpartisan news detection that can easily be applied to other text classi�cation
tasks.

� We conduct a comparative analysis of document representation techniques for text
classi�cation.

� We present the �rst study to use a wide range of semantic features based on word rep-
resentations obtained from both in-domain and out-of-domain data for hyperpartisan
news detection.

� We provide examples of feature types that are speci�cally useful for hyperpartisan
news detection, but also for tasks that concern the detection of linguistic bias.

� We conduct one of the �rst studies to experiment with Flair (Akbik et al., 2018), a
novel NLP toolkit which allows to combine word embeddings and that uses several
techniques to e�ectively use these word embeddings in text classi�cation.

� We provide a comparative study of the e�ectiveness of current techniques to create
word embeddings with Word2vec, GloVe, FastText and Flair.

Hyperpartisan News Detection 6/80

� We describe and test an empirical method to develop robust models for fake news
and related tasks.

� We obtain very competitive results for in-domain evaluation in the o�cial hyperpar-
tisan news detection benchmark.

� We outline a robust set of features that perform well across tasks related to fake news
detection. Our systems outperform previous work in an out-of-domain evaluation on
fake news without performing any speci�c tuning on the classi�ers that we used for
hyperpartisan news detection.

In the next chapter, we position our project in the existing body of research that has
been conducted on hyperpartisan news detection and related tasks. In Chapter 3, we
present the data that we used for this study. The Chapters 4 and 5 describe the methods
and materials that we used to answer our research questions. In the former, we introduce
the di�erent document representations that we used and highlight their advantages and
disadvantages. The latter describes the experimental set-up of the project. We subse-
quently present the results of our studies in the Chapters 6, 7 and 8. We �nish our work
with an analysis of the results in Chapter 9 and conclude our research in Chapter 10.

Hyperpartisan News Detection 7/80

2 Related Work

In this chapter we present the theoretical framework that is related to hyperpartisan news
detection. Hyperpartisan news is a relatively new phenomenon, and has therefore received
little attention in computational linguistics. Therefore, we present studies concerned with
tasks which aim to automatically detect linguistic bias. Moreover, since we also develop
classi�ers for fake news detection in this project, we additionally discuss studies concerned
with this task. Despite the di�erences between the tasks and domains, we hypothesize
that the features and systems discussed in these works aid to develop systems that identify
hyperpartisan news. After all, the tasks can be approached as sub-tasks within detecting
biased language.

2.1 Hyperpartisan Content Detection

This section consists of two parts. In the �rst part, we describe the related work that is
conducted on automatically detecting hyperpartisan news. In the second part, we present
a body of research concerned with the manual detection of political bias.

2.1.1 Automatic Detection

The study of Potthast et al. (2017) is one of the few available studies that is particularly
focused on detecting hyperpartisan in addition to fake news. They approached fake news
detection by investigating the writing style of fake news in relation to hyperpartisan news.
Their corpus consisted of 1,627 articles. 826 of these documents were mainstream news
articles and the remaining documents were hyperpartisan news articles. Furthermore, 256
of those articles were on the left-wing and 545 right-wing of the political spectrum. To
detect hyperpartisan news, Potthast et al. (2017) used a writing style model that relied on
commonly used stylistic features and some speci�c news domain features combined with
dictionary-based features. The latter implied the usage of the General Inquirer Dictionaries
(Stone et al., 2007). Domain speci�c features are based on the number of quoted words
and external links, the number of paragraphs and their average length in an article. In
order to avoid over-�tting, they discarded all features that occurred in less than 10 percent
of the documents. Using these stylistic features, the authors managed to build an accurate
classi�er (accuracy = 0.75) that discriminates between hyperpartisan and mainstream
news. Hence, it is possible to build a simple classi�er that only relies on stylistic features.
Nonetheless, they did not test their best system on fake news detection, which would have
been interesting to test how speci�cally useful these features are for hyperpartisan news
detection.

Another study that focuses on hyperpartisan news detection is the work of Hutto et al.
(2015). Their study is particularly centered on bias detection in news reports and they aim
to quantify the amount of the bias. The features that they considered in their study were
based on a survey that investigated factors that a�ect the perception of bias in news stories.
They worked with several types of features. First, they performed a structural analysis at

Hyperpartisan News Detection 8/80

sentence level containing sentiment scores using VADER (Hutto and Gilbert, 2014). They
also retrieved the subjectivity score, modality score and general mood of the text. Finally,
they computed the readability score using Flesh-Kinchaid Grade (Kincaid et al., 1975).
The second type of features that they used were motivated by Recasens et al. (2013),
of which they used features such as factive verbs, implicative verbs, assertive verbs and
hedges. In addition, they also used coherence markers and several type of words from the
Linguistic Inquiry and Word Count (LIWC) (Pennebaker et al., 2015), such as causation
words, certainty words, tentative words, third-person pronoun, achievement words, work
words, conjunctions, prepositions and adverbs. They used a statistical linear regression
model and both forward and step-wise (AIC) to measure the relative quality of each feature
for the degree of bias. Their results showed that sentence levels of subjectivity were less
meaningful, whereas sentence level measure for modality was a stronger indicator of bias
than LIWC certainty words. In addition, their �ndings proved that the readability was
unrelated to the degree of perceived bias. Other poor indicators were implicative verbs,
degree modi�ers, coherence markers, causation words, conjunctions, adverbs, prepositions
and auxiliary verbs. By removing those features their system reached an accuracy greater
than 97 percent and accounted for 85.9 of the variance in the human judgments of perceived
bias in news.

Finally, when we started with this project, there was a shared task on hyperpartisan
news detection organized by SemEval 2019 (Kiesel et al., 2019). We used the data of this
shared task (see Chapter 3) for the current project and were able to continue submitting
runs on the test set through the software TIRA (Potthast et al., 2019). Furthermore,
before starting the thesis, we submitted a system to the competition which obtained an
accuracy of 0.621 on the test set (30th out of 42 participants). We use this system as the
baseline for this project (see Chapter 5). Moreover, the winning system scored an accuracy
of 0.822 on the test set. Since the description papers of the submitted systems were not yet
published during the thesis, we were unable to gain knowledge about the winning system
and to build further on this knowledge during the thesis.

2.1.2 Manual Detection

The work of Yano et al. (2010) is another study that is concerned with identifying political
bias in texts is the work of Yano et al. (2010). Nonetheless, this study is particularly
aimed at identifying linguistic indicators of bias in American political blog posts of 2008.
Arguably, this falls into a di�erent text genre than news articles. Furthermore, the authors
did not test the usefulness of their potentially relevant features by deploying a text classi-
�cation system. Instead, Yano et al. (2010) created a corpus of texts with labeled by their
overall bias. The �rst step that they conducted to built this corpus was to extract 261.073
sentences from their collected blog corpus, which contained an equal amount of conserva-
tive and liberal texts. To identify the sentences, the authors ensured that the sentences
satis�ed at least one of three conditions. The �rst was that the sentence should contain
one of the \sticky" partisan bi-grams, which were de�ned as terms that are particular to
one side in the political debate. In order to capture those terms from the sentences, the

Hyperpartisan News Detection 9/80

authors created two lists of those bi-grams: one representing liberal terms (495 bi-grams)
and one for the conservative side (539 bi-grams). The second condition implied that the
sentence should have at least one of the words in the list of emotional words that they
created. This list contained several items from the LIWC dictionary (Pennebaker et al.,
2015), including words that could be used to express negative emotion, positive emotion,
causation or anger. The �nal condition was concerned with the membership of \killing-
related verbs". The potential relevance of those verbs for determining political bias was
derived from Greene and Resnik (2009). Greene and Resnik (2009) observed that when
comparingMillions of people starved under Stalinto Stalin starved millions of peoplethe
latter was generally viewed as being more negative towards Stalin. They concluded that
killing-related verbs provide strong examples of this phenomenon because they exhibit a
particular set of semantic properties that are associated with the transitive verb. There-
fore, Yano et al. (2010) used the 11 \kill verbs" from the study of Greene and Resnik
(2009), such asslaughter, assassinate, shoot, poison, strangle, smotherand su�ocate in
their third condition.

Based on these three conditions, Yano et al. (2010) built a corpus of `biased' sentences
in which annotators had to quantify the bias asnone, somewhator very. The results led
Yano et al. (2010) construct a list of biased words and their relative frequency of the bias
mark. For instance, the wordsadministration, Americans, womanand singlewere strongly
associated with liberal bias. In contrast, the wordsillegal, Obama's and corruption were
strong predictors of bias leaning towards the conservative political spectrum. However, the
authors observed that although the participants managed to detect bias correctly, it was
di�cult for them to detect the type of bias. In particular, the annotators had an overall
agreement of 0.55.

Another study which showed that determining the strength of the bias in an article
is the work of Vincent and Mestre (2019). Annotators disagreed about one third of the
articles when they had to label the amount of bias in a text. More speci�cally, the authors
collected a dataset of 1,273 articles labeled by three annotators through crowd-sourcing.
All articles were assured to be about political news. 50 percent of this dataset was used for
the shared task on hyperpartisan news as a test set and the remaining was publicly made
available for the participants to train their systems on. We therefore further explain this
dataset in the next chapter.

2.2 Fake News Detection

On one hand, there is a body of research available on fake news detection that relied on
traditional supervised classi�cation techniques, such as SVM (Vapnik, 1995). We present
a few of these studies in the �rst part of this section. On the other hand, there are several
studies that used neural networks for this task. Because of recent technological advances
and the success of deep learning in NLP, it is likely that future studies will continue to use
them. We therefore present the studies that worked with neural networks in the second
part of this section.

Hyperpartisan News Detection 10/80

2.2.1 Feature-based Supervised Learning

One interesting study on fake news detection is the work of P�erez-Rosas et al. (2018). The
authors worked with two fake news datasets. The �rst dataset was created by humans
via crowd-sourcing. Each participant received several legitimate news articles coming from
the following domains: business, entertainment, politics, technology, and education and
sports. Then, the task was to rewrite a rewrite a shorter `fake' version while emulating a
journalistic style. The outcome of this procedure was a parallel corpus of 250 news articles
and their respective fake versions (500 articles in total). The second dataset was a corpus of
fake news that naturally occurs on the web, which was about celebrity news. It contained
500 articles, with an even frequency distribution for legitimate and fake news. P�erez-Rosas
et al. (2018) used the following set of features:

� Uni-grams and bi-grams from the bag-of-words representation of each news article
with tf-idf weighting.

� Punctuation features that denoted the type of punctuation that was used, derived
from the Linguistic Inquiry (LIWC) and Word Count Software (Pennebaker et al.,
2015).

� Psycho-linguistic features, also derived from the LIWC.

� Syntactic features representing the context-free grammar of a document.

� Readability features.

The readability features were mainly derived by extracting content features such as the
number of characters, complex words, number of syllables, word types, number of para-
graphs and long words. In addition, the authors calculated several readability metrics,
such as Flesh Kinchaid Grade (Kincaid et al., 1975), the Automated Readability Index
(Smith and Senter, 1967), the Gunning Fog Grade Readability Index (Gunning, 1952)
and the SMOG readability index (McLaughlin, 1969). The features were used in a linear
Support Vector Machine (SVM) classi�er with default parameters and evaluated on 5-fold
cross-validation. For both datasets, the most accurate systems were classi�ers that relied
on all features. In particular, their systems reached an accuracy of 0.74 on the fake news
corpus that was created through crowd-sourcing and 0.76 on its counterpart.

P�erez-Rosas et al. (2018) also performed an across-domain evaluation in which the
models were trained using the crowd-sourced fake news corpus and tested on the other
dataset, and the other way around. In both cases, the accuracy of the systems dropped
signi�cantly, as they varied between 0.48 and 0.65. A further interesting �nding was that
readability features seemed to be equally relevant in both domains. Thus, P�erez-Rosas
et al. (2018) proved that the domain of the article is an important aspect that should be
taken into account when classifying fake news. However, it is crucial to bear in mind that
the authors used small datasets and that the datasets di�er in another aspect that their
domain, which is that only one of them consists of `natural' fake news. This could also be
a valid explanation for the decreased performance.

Hyperpartisan News Detection 11/80

Horne and Adali (2017) approached fake news detection in a similar manner. They
used a similar set of features as P�erez-Rosas et al. (2018), such as the readability of the
text, LIWC features and stylistic features involving the style of the writers and the syntax
of the text, such as the amount of nouns and verbs. Besides, the authors also used a linear
SVM classi�er. A small di�erence is that Horne and Adali (2017) also used sentiment
features to detect fake news, by means of the tool SentiStrength (Thelwall et al., 2012),
which measures the intensity of positive and negative emotion in a document. However,
the main di�erence with their study is that they also study the title of the articles and
their importance to distinguish between fake and legitimate news. In particular, Horne
and Adali (2017) observed that fake news articles are longer than legitimate news articles.
They also contain simpler words. Furthermore, fake news titles use more capitalized words,
signi�cantly more proper nouns, whereas fewer stop-words and nouns overall. The authors
surmised that writers of fake news attempt to squeeze as much content into the titles by
skipping stop words and nouns to increase the amount of proper nouns and verb phrases.
Overall, Horne and Adali (2017) were able to achieve an accuracy score of 0.71 when
the body of the text was used and 0.78 when using only the title of the text on 5-fold
cross-validation. Still, it is crucial to bear in mind that the authors used two relatively
small datasets. One of them contained 36 instances of legitimate news and 35 fake news
texts. The other dataset had 75 mainstream news articles and 75 fake news articles.
Besides, all articles were about politics. We have seen in the study from P�erez-Rosas
et al. (2018) that the predictive power of features can di�er per domain. Thus, it remains
questionable whether the authors would obtain a similar performance when there would
be more documents and/or when they would work with di�erent topics.

The previously discussed studies conducted by P�erez-Rosas et al. (2018) and Horne
and Adali (2017) seem to suggest that fake news detection can best be approached by
using a large set of di�erent features. This makes us wonder whether it would also be
possible to use a less sophisticated approach. This is addressed in the study of Ahmed
et al. (2017), who solely used n-gram modeling with tf-idf weighting to detect fake news.
They only performed a few data pre-processing steps, such as stop word removal and
stemming. Another major di�erence is that Ahmed et al. (2017) used a large dataset of
12,600 fake news articles and 12,600 legitimate news articles. Besides, the authors also
experimented with other classi�cation techniques in addition to a linear SVM classi�er:
Stochastic Gradient Descent, K-Nearest Neighbour, Decision Trees and Support Vector
Machines (SVM) with non-linear kernels. Still, the highest result was obtained by a linear
SVM classi�er, yielding an accuracy score of 0.92. This classi�er used 1 as the value for
n and 50,000 as the number of features for the bag-of-words model. Thus, it is possible
to detect fake news with a simple linear SVM classi�er that only relies on bag-of-word
uni-grams.

2.2.2 Supervised Learning with Neural Networks

Within the theoretical framework of fake and hyperpartisan news detection, there are a
few studies that have used neural networks to tackle the classi�cation task. One example

Hyperpartisan News Detection 12/80

of such a study is the work of Bajaj (2017), who experimented extensively with various
neural network architectures. In contrary to the previously mentioned works, Bajaj (2017)
worked with a large dataset of fake news (63,000 articles). The neural network structures
that were used in this study are described below.

� A simple two-layer feed-forward neural network that used the average of all vectors
corresponding to the average of all words in the news story. Thus allowed to normalize
the vectors by their length while taking every content word into account.

� A bi-directional Recurrent Neural Network (RNN) to consider the entire length of
each news article. To deal with the length of each article Bajaj (2017) used a limit of
200 time steps (and shorter examples were padded with zero vectors at the beginning).
The author also experimented with Gated Recurrent Units (GRUs) (Cho et al., 2014)
and Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997).

� Convolutional Neural Networks (Krizhevsky et al., 2012) with max pooling.

� Attention-augmented Convolutional Neural Networks.

In general, the Recurrent Neural Networks outperformed the other classi�cation techniques.
In particular, the highest scores were achieved with GRUs (f-score=0.84), LSTMs (f-
score=0.81) and BiLSTMs (f-score=0.81). Thus, the study showed that GRUs and LSTMs
are e�ective classi�cation architectures for fake news detection.

Another study which proved that LSTMs are useful for fake news identi�cation is the
study of Ajao et al. (2018). They worked with three di�erent types of LSTMs: LSTM
without dropout regularization, LSTM with dropout regularization and LSTM with Con-
volutional Neural Networks (CNN). Their dataset consisted of 5,800 Tweets. Even though
all LSTMs performed well, the highest accuracy was achieved by the LSTM that did not
use dropout regularization (accuracy = 0.8229). However, the size of their data is smaller
than ours and the length of the documents is shorter, since Ajao et al. (2018) are not
working with news articles but with Tweets.

Singhania et al. (2017) proposed a di�erent method, in which they built a hierarchical
attention network to represent the internal structure of a news article. The model contained
four levels: one for words, the headline (both using GloVe word embeddings and a bi-
directional GRU), sentences (using a bidirectional GRU), and the headline. It constructed
a news vector by processing an article from a hierarchical bottom-up manner. Furthermore,
their model relied on three assumptions: words form sentences, sentences form the body
and the headline with the body forms the article. The headline was viewed as a distinctive
feature of the article that contains a concise summary of the article body and contains useful
information in the form of its stance with respect to the body. To extract relevant words
of a sentence, Singhania et al. (2017) created a sentence representation that is formed with
an attention layer. The same was done to extract relevant features from the headline. On
the �nal level, relevant sentences were identi�ed in the formation of the body by using an
attention layer. Using this hierarchical attention network, the authors were able to obtain

Hyperpartisan News Detection 13/80

accuracy scores between 0.9481 and 0.9677. These scores outperformed the classi�ers that
simply modeled the structure of the article by concatenating the headline to the body of
the article. However, the results were only slightly higher. For instance, a simple SVM
model that used bag-of-n-grams with tf-idf weighting already reached an accuracy of 0.9247
on their corpus of 20.372 fake news articles and 20,932 mainstream articles. Other bag-of-
words classi�ers obtained accuracy scores between 0.9121 and 0.9247. Still, the fact that
their attention model managed to outperform these high accuracy scores provides evidence
that taking the hierarchical structure of the article into account yields a more accurate
approach than bag-of-words.

2.3 Biased Language Detection

In addition to news, there is another genre of online texts in which bias can occur, which is
Wikipedia articles. Wikipedia articles are a popular resource for related work on linguistic
bias detection in general. An example of a work that is concerned with this is the study
of Recasens et al. (2013). This work used a corpus of 7464 Wikipedia articles. All articles
contained edits from authors that were associated with a neutral point of view (NPOV) tag.
Thus, these edits were likely to be used for the purpose of removing bias. Furthermore,
they categorized bias language into two types. The �rst, which was etymological bias,
involves prepositions that are commonly agreed to be true or false and are presupposed,
entailed, asserted or hedged in a text. In order to identify this type of bias, the authors
used factive verbs, entailments, assertive verbs and hedges.

The other type of bias is framing bias, which occurs when subjective one-sided words are
used to reveal the author's stance. This type of bias was detected by extracting subjective
intensi�ers, one-sided terms (e.g., liberated, captured, pro-life). They trained a logistic
regression model that takes each word as a feature and its surrounding context using a 5-
gram window capturing the two words to the left and the three words to the right. Given
the word w, they extracted around 32 features, including the lemma, POS tag of the left
word, POS tag of the left-most word beforew, whether one or two words aroundw is an
assertive, factive, report or implicative verb and whether the wordw is in the list of Liu
et al. (2005) list of positive words and/or negative words. A few of the most contributing
features were: the wordw under analysis, the POS-tag of the word afterw, whether w is a
report verb or a positive or negative word. They also computed the readability of the text,
using the same metrics as P�erez-Rosas et al. (2018). The authors evaluated their system
by outputting as the highest bias ranked word or the two or three lowest ranked words,
on which they reached an accuracy score of 0.3435, 0.4652 and 0.5870 respectively. They
received the best results by using all features, which showed that contextual, linguistic and
sentiment-related characteristics are important.

The work of Hube and Fetahu (2018) also focused on bias detection in Wikipedia. Their
set-up di�ers from Recasens et al. (2013) in that they detected bias in 1000 statements
from NPOV Wikipedia articles. The most informative features, which were selected by
the chi-square selection algorithm and in a Random Forest classi�er, were related to the
ratio of biased words in a statement and their context, LIWC features based on psycho-

Hyperpartisan News Detection 14/80

logical and psychometric analysis and the context in which words from speci�c lexicons
appeared that represented epistemological and framing bias. They used lexicons with re-
port verbs, assertive verbs, factive verbs, positive words, negative words, implicative verbs.
Furthermore, they created an automatic dictionary of biased words by crawling all articles
under politics from Conservapedia (11,793), which is a wikipedia page according to right-
conservative ideas including strong criticism and attacks especially on liberal politics and
members of the Democratic Party of the United States. They used this data to train word
representations with Word2vec (Mikolov et al., 2013; Mikolov, 2013). They worked with a
seed word list and looked to the list of closest words in their word representation. By using
these features, they were able to score an accuracy of 0.73 on the test set with a Random
Forest classi�er.

2.3.1 Summary

The related studies that we described in this chapter provided interesting features and clas-
si�cation architectures for (related tasks to) hyperpartisan news detection. For instance,
we have seen in the previous studies concerned with hyperpartisan news detection that
stylistic features are useful (Potthast et al., 2017). The studies that were concerned with
bias detection in other texts genres than news, pointed out that using a combination of
a large set of di�erent features is particularly useful to detect bias linguistically. These
features were mainly local features, such as the sentiment, POS n-grams, the usage of an
assertive and/or factive verb and the lemma of a word (Recasens et al., 2013; Hutto et al.,
2015). Some features that were mentioned in these studies were also e�ective for fake news
detection, such as dictionary-based features from the Linguistic Inquiry and Word Count
Software (Pennebaker et al., 2015) and readability features. Because of this, we will also
conduct experiments with a few of these features the current work. We will refer to them as
`additional features' or `local features', since we will use them in addition to our document
representations.

Moreover, the works discussed in this chapter proved that a Support Vector Machine is
an e�cient classi�cation technique for fake news detection, especially when it uses a linear
kernel (Ahmed et al., 2017; Gilda, 2017). We therefore decided to work with Support
Vector Machines in this study as well. Furthermore, the studies that used neural networks
for fake news detection showed that Recurrent Neural Networks (RNNs) are the way to
go when using neural networks. One study experimented with a variant of RNNs, namely
Long short-term memory (Ajao et al., 2018), which obtained promising results for future
work on fake news detection. In the work of Bajaj (2017) however, the author compared
the performance of a LSTM to another variant of RNN, namely Gated Recurrent Units
(GRUs). The latter performed better than LSTM. Because of the promising results with
Recurrent Neural Networks in these related studies, we decided to experiment with them
as well. We particularly experimented with GRUs, since they received better results than
LSTMs (Bajaj, 2017).

Hyperpartisan News Detection 15/80

3 Data

In this chapter, we present the two datasets that we will use in the rest of this thesis.
The �rst is the hyperpartisan news dataset from SemEval-2019 Task 4 on hyperpartisan
news detection (Kiesel et al., 2019). The second is the fake news dataset from the study of
P�erez-Rosas et al. (2018), which we will use to test our models in an out-of-domain setting.

3.1 The SemEval-2019 Task 4 Hyperpartisan News Dataset

The complete dataset that was used for the shared task consists of two corpora: the by-
publisher and the by-article corpus. The former is labeled by the overall bias has provided
by Buzzfeed journalists or Mediabiasfactcheck.com. In contrast, the by-article dataset is
labeled through crowd-sourcing (Vincent and Mestre, 2019). We describe both sets in
Section 3.1.1 and 3.1.2 respectively.

3.1.1 By-publisher

The by-publisher dataset is automatically annotated based on a list of publishers of hy-
perpartisan news (Kiesel et al., 2019). It is further divided into three sets: a training
set, a validation set and a test set. The training set was available for participants in the
shared task. It contains 600.000 documents, and there are 60 di�erent publishers. Half of
these documents are labeled as hyperpartisan news (hyperpartisan=true). The remaining
documents are labeled as legitimate news (hyperpartisan=false). Furthermore, the articles
are labeled by their position on the political spectrum. This position is indicated by either
one of the following classes: left, left-center, least, right-center and right. Articles that
are labeled as being on theright or left side of the political spectrum are automatically
labeled as being hyperpartisan. However, when using the by-publisher dataset, we focused
on binary prediction (i.e., the hyperpartisan class: true or false), since this was also the
main task in the competition.

The validation set has 150.000 documents. The frequency distribution of the classes
is also balanced. Furthermore, this dataset was available for participants that signed up
for the shared task, similar as the training set. None of the publishers that occur in this
set also occur in the training set. In this way, the organizers ensured that the participants
would try to extract features for hyperpartisan news, rather than modeling the features of
the publishers themselves (i.e., publisher attribution).

Despite the attractive size of the by-publisher training and validation set, we decided to
not train systems on the complete by-publisher training nor validation set. Since we were
planning to conduct a large amount of experiments, it was more practical to use a smaller
but representative dataset of the by-publisher corpus. This set contains articles from both
the by-publisher training and validation set. We will further present this dataset in Section
3.2. Nonetheless, we used the by-publisher training set for other purposes in this study.
We will describe this in more detail in the next chapters.

Hyperpartisan News Detection 16/80

Finally, the test set of the by-publisher corpus contains 4000 articles: 2000 of them
are hyperpartisan news and 2000 are mainstream news. This dataset was not used for
the competition, but participants could test their classi�ers on this dataset for further
experimentation. However, the by-publisher dataset was hidden for the participants. It
was also not published after the evaluation period of the shared task. However, it is possible
to test systems on this dataset by using the virtual machine provided by the organizers.
This system is called TIRA and further described in Potthast et al. (2019).

3.1.2 By-article

The complete by-article corpus contains 1,273 articles of political news from hyperpartisan
and mainstream websites. The data was manually annotated by three annotators through
crowd-sourcing (Vincent and Mestre, 2019). The annotators were asked to grade the bias
of the article on a 5-point Likert scale:

1. no hyperpartisan content

2. mostly unbiased, non-hyperpartisan content

3. not sure

4. fair amount of hyperpartisan content

5. extreme hyperpartisan content

The organizers Kiesel et al. (2019) removed the articles of the dataset with a low agreement
score and the articles that received a score of 3. The labels were binarized by labeling the
articles with a score of 4 and 5 as hyperpartisan. The articles that scored 1 or 2 were
labeled as not being hyperpartisan. The result of this procedure was a collection of 1,273
articles that were either labeled as beinghyperpartisan or not. This dataset was used in
the shared task and divided into two parts: one was used for training and the other one
was used for testing the participants' systems. The available training set contains 645
articles, of which 238 (37%) articles are hyperpartisan and 407 (63%) are not. The second
example that we presented in Chapter 1 was a part of one of the hyperpartisan articles in
this dataset. We show the complete version of this article in Figure 1. We also outline the
relevant statistics of the by-article dataset in Table 2. Furthermore, similar as for the by-
publisher subset, we present the frequency distribution of the publishers of hyperpartisan
news and mainstream news in Figure 6 and 7 respectively. It additionally presents the
statistics of the other dataset that we used to train our systems, which is a subset of the
by-publisher corpus. We describe this dataset in the next section.

The remaining 628 articles (50% hyperpartisan and 50% mainstream) from the by-
article corpus was used as the o�cial test set for the competition. Hence, the frequency
distribution of the labels in test set is equally distributed, in opposition to the training set.
In order to evaluate a system on the test set, participants had to use the same procedure
as for the by-publisher test set. Thus, they had to submit their system through TIRA

Hyperpartisan News Detection 17/80

Trump Just Woke Up & Viciously Attacked Puerto Ricans On Twitter Like A Cruel
Old Man
Donald Trump ran on many braggadocios and largely unrealistic campaign promises. One of
those promises was to be the best, the hugest, the most competent infrastructure president the
United States has ever seen. Trump was going to �x every infrastructure problem in the country
and Make America Great Again in the process. That is, unless you're a brown American. In
that case, you're on your own, even after a massive natural disaster like Hurricane Maria. Puerto
Rico's debt, which the Puerto Rican citizens not in government would have no responsibility
for, has nothing to do with using federal emergency disaster funds to save the lives of American
citizens there. The infrastructure is certainly a mess at this point after a Category 5 hurricane
ripped through the island, and 84 percent of Puerto Rican people are currently without electricity.
Emergency e�orts after Hurricanes Irma and Harvey reportedly went very well and Trump praised
himself as well and even saw his disastrous approval ratings tick up slightly as a result. However,
the insu�cient response in Puerto Rico has nothing to do with Trump, in his mind, and can only
be blamed on the people there who do not live in a red state and have no electoral college votes to
o�er the new president for 2020. They're on their own. Twitter responded with sheer incredulity
at Trump's vicious attack on an already su�ering people. YouTube

Figure 1: An example of an article with hyperpartisan content from the by-article training
set.

Hyperpartisan
class

Amount Bias class Amount

true
24066
49.65%

least
11361
23.44%

false
24401
50.35%

left
11659
24.06%

total 48467 left-center
12272
25.32%

right
12742
26.29%

right-center
433
0.89%

total 48467

Table 1: The distribution of hyperpartisan and bias labels our by-publisher subset.

Hyperpartisan News Detection 18/80

Metric By-publisher subset By-article training
Total tokens 29M 412K
Total types 14M 180K
Total sentences 1.5M 16K
Avg sentences per doc 29.18 25.35
Avg words per doc 598.45 638.55
Avg types per doc 286.69 279.21
Tokens in longest doc 3336 6389
Types in longest doc 1274 1338

Table 2: Corpus statistics of the datasets that we used for classi�cation purposes.

(Potthast et al., 2019). Furthermore, to ensure that the classi�ers would not pro�t from
over-�tting to publisher style, the authors constructed the data in such a way that there
were no articles from the same publishers in the training and test set.

3.2 By-publisher Subset

We used a subset of the by-publisher corpus that was created by members of the University
of Groningen. This dataset contains 48467 articles. The documents come from the training
and validation set. The frequency distribution of the hyperpartisan labels (either true or
false) and bias labels were presented in Table 1. The table reveals that the frequency
of the hyperpartisan labels is equally distributed (approximately 50-50). In contrast, the
distribution of the bias labels is skewed, as only 0.89% of the documents are labeled as
being right-centered on the political spectrum.

Moreover, the frequency distribution of the Top 20 most frequent publishers of hy-
perpartisan news and mainstream news are shown in Figure 4 and 5 respectively. Both
�gures reveal that for both classes, there is a relatively large amount of articles that come
from one particular publisher. In case of hyperpartisan news, this publisher isfoxbussi-
ness (N =10747). For mainstream news it isabqjournal.com(N =7505). Because of this,
the frequency distribution follows a long-tail pattern: there are many articles from a few
publishers.

Nonetheless, it is worthwhile to mention that there are two sources of errors in the
by-publisher data which had also permeated our subset. First, the presence of articles that
are not about politics, such as the example in Figure 2. More speci�cally, this article is
labeled as being on the right-side of the political spectrum. The second issue is that the
articles are automatically annotated. Thus, we assumed that there would be errors in the
dataset: some articles may have been labeled as being hyperpartisan, whereas they are
not.

Hyperpartisan News Detection 19/80

KISS band members got patriotic during Saturday night`s concert in Louisiana, temporarily
pausing the classic rock show to lead the crowd in the Pledge of Allegiance. After �nishing up
their signature song, (I Wanna) Rock and Roll All Nite at the Gretna Heritage Festival, guitarist
Paul Stanley thanked the U.S. military and gave a shout-out to Army Maj. Steve Roberts, who
was in attendance, The Times-Picayune reported. It`s always cool to love your country, Mr.
Stanley told the crowd. The concert in Gretna wrapped up the band`s KISSWORLD 2017 Tour
in North America and Europe, and it wasn`t the �rst time the pledge was made part of the show.

Figure 2: An example of a hyperpartisan text (right-leaned) that is not about politics.

3.3 Fake News Dataset

We selected the fake news dataset presented in P�erez-Rosas et al. (2018) to test the perfor-
mance of our systems in an out-of-domain evaluation set-up. We have described the general
set-up of their study in the previous chapter (see Section 2.2). The most important reason
why we decided to use this dataset for this purpose is that the authors evaluated their
classi�ers across datasets of fake news.

The fake news corpus of P�erez-Rosas et al. (2018) contains two sets: the FakeNewsAMT
and the CelebrityNews dataset. We present the relevant corpus statistics of these datasets
in Table 3. The fake news articles of FakeNewsAMT were written by participants in a
crowd-sourcing set-up. We explained in the previous chapter how this data was created and
that the news articles came from the following domains: sports, business, entertainment,
politics, technology, and education.

Metric FakeNewsAMT CelebrityNews
Total tokens 68K 1.2M
Total types 45K 29K
Total sentences 2540 10K
Avg sentences per doc 5292 21.60
Avg words per doc 141 2467.58
Avg types per doc 93.89 58.88
Tokens in longest doc 3336 77371
Types in longest doc 1274 87

Table 3: Corpus statistics of the datasets of P�erez-Rosas et al. (2018) that we used for
out-of-domain evaluation.

The FakeNewsAMT dataset contains 240 instances of fake news and 240 of legitimate
news. In contrast, the CelebrityNews dataset includes 250 samples of fake news and 250
samples of legitimate news. Another di�erence is that all articles come from the same
domain, namely celebrity news. The articles of this dataset were manually collected by
the authors. Thus, in contrast to the FakeNewsAMT dataset, the CelebrityNews dataset
contains documents that occur naturally on the internet. All articles are about celebrities
and other public �gures. For further illustration, we show an example of a fake news article

Hyperpartisan News Detection 20/80

about celebrities from this dataset in Figure 3.

Kanye West Wants to Enter Cosmetics Business Like Kylie Kanye West wants to go
head-to-head with his famous sister-in-law ... diving head �rst into the cosmetic biz dominated by
Kylie Jenner. Kanye`s �led legal docs declaring his intention to produce DONDA brand makeup,
perfumes, lotions and other cosmetics. Donda, of course, is Kanye`s beloved mom who passed
away in 2007. He`ll be up against some sti� family competition. Kylie`s cosmetics sell out within
minutes ... some resell on eBay for 10 times the retail value. Kanye`s application to snag the
DONDA cosmetics line is currently being processed but our sources say at this time he`s only
�led the paperwork in case something develops.He`s made it clear ... Kanye wants to be the new
Martha Stewart, creating a lifestyle brand that includes credit cards, cars, wallpaper screens,
furnishings, video games, amusement parks, hotels, �tness centers and healthy fast food. So
which one`s gonna give Kim lip?

Figure 3: An example of a fake news article from the CelebrityNews dataset of P�erez-Rosas
et al. (2018).

Hyperpartisan News Detection 21/80

Rank publisher freq.
1 foxbusiness.com 10747
2 counterpitch.org 4010
3 truthdig.org 3072
4 thedailybeast.com 1762
5 dissentmagazine.org 509
6 mintpressnews.com 426
7 dcclotheslines.com 233
8 therealnews.com 231
9 fair.org 222
10 bizpacreview.com 220
11 washingtontimes.com 199
12 joemygod.com 198
13 freebacon.com 195
14 forwardprogressives.com 185
15 leftvoice.org 168

Total 22096

Table 4: The frequency distribution of the
Top 20 most frequent publishers of hyperpar-
tisan news in the by-publisher subset.

Rank publisher freq.
1 abqjournal.com 7505
2 nbcnews.com 4868
3 calwatchdog.com 2955
4 natmonitor.com 2500
5 reuters.com 2039
6 billmoyers.com 1130
7 ivn.us 941
8 factcheck.org 733
9 studionewsnetwork.com 390
10 reviewjournal.com 282
11 thetrace.org 206
12 foreignpolicyjournal.com 151
13 thewhim.com 142
14 greensboro.com 59
15 newsandguts.com 45

Total 25069

Table 5: The frequency distribution of the
Top 20 most frequent publishers of main-
stream news in the by-publisher subset.

Rank publisher freq.
1 thegatewaypundit.com 17
2 opslens.com 14
3 realclearpolitics.com 13
4 nypost.com 10
5 salon.com 8
6 express.co.uk 7
7 opednews.com 7
8 dcclothesline.com 6
9 turtleboysports.com 6
10 pjmedia.com 6
11 trueactivist.com 5
12 video.gq.com 4
13 bearingarms.com 4
14 breakingisraelnews.com 4
15 washingtonexaminer.com 4

Total 115

Table 6: The frequency distribution of the
Top 20 most frequent publishers of hyperpar-
tisan news in the by-article training set.

Rank publisher freq.
1 cbsnews.com 24
2 circa.com 21
3 express.co.uk 13
4 heavy.com 12
5 snopes.com 11
6 nbcnews.com 8
7 n.com 8
8 insider.foxnews.com 8
9 nytimes.com 7
10 businessinsider.com.au 7
11 king5.au 6
12 kiro7.com 6
13 nypost.com 5
14 kcra.com 5
15 bradenton.com 4

Total 145

Table 7: The frequency distribution of the
Top 20 most frequent publishers of main-
stream news in the by-article training set.

Hyperpartisan News Detection 22/80

4 Document Representations

In this chapter, we describe four di�erent techniques that we used to create document rep-
resentations in our systems: bag-of-words/characters, bag-of-clusters, word embeddings
and contextual character-based embeddings. We highlight the advantages and disadvan-
tages of these techniques. We present the resources that we used to create the document
representations that we used as well.

4.1 Bag-of-words

When documents are vectorized as bag-of-words, the length of each vector is equal to
the vocabulary size of the training data. Each document is then represented as a vector
of its word frequencies. We illustrate the bag-of-words vectorization procedure for two
documents in Table 8. Note that the illustration is simpli�ed and that it only shows a
proportion of the document vectors.

The bag-of-words approach is established upon the assumption that the relevance be-
tween documents can be indicated by the frequencies of their words. In text classi�cation,
vectorizing documents as bag-of-words is useful when there are words in the corpus that
occur more frequently in documents from a speci�c class than in the other class. Thus, in
our case, vectorizing documents as bag-of-words would be useful when there is a speci�c
set of words that occur more frequently in hyperpartisan news than in non-hyperpartisan
news.

There are several variants of the bag-of-words method. One of them is to use bag-
of-n-grams, such as word bi-grams or tri-grams. This is a simple technique to represent
documents by counting how often a sequence of words occur in a document. In some cases,
it might be more e�ective to count how often sequences of words occur in a document,
instead of single words (i.e., uni-grams). For instance, in the example in Table 8, it might
be useful to count how oftenDonald Trump occurs in a document, instead ofTrump. If
Melanie Trump occurs four times in the next document, then the vectorizer will not add
four to the amount of times that it has seenDonald Trump, which would happen if the
vectorizer would have used word uni-grams.

Another popular variant is to use bag-of-character n-grams, which can be used to
capture sequences of characters. In a bag-of-characters representation, the wordTrump
could for instance be represented by 1-to-3-grams as:Tru , rum and ump. In general,
there are two advantages of character n-grams. The �rst is that they are able to detect the
morphological units of a word. This is speci�cally interesting for highly inected languages,
but also for English. The second advantage is closely related to the �rst, which is that bag-
of-characters are more capable of capturing misspellings and out-of-vocabulary words than
bag-of-words. For example, suppose that we would train a classi�er on the two documents
in Table 8 using character 1-to-4-grams. If the wordlarge would occur in the test set, then
we would still be able to use this word in our classi�cation procedure, as we have seen the
word largely in the training data.

Hyperpartisan News Detection 23/80

Document 1 Document 2
Donald Trump ran on many
braggadocios and largely unre-
alistic campaign promises . One
of those promises was to be
the best, the hugest, the most
competent infrastructure presi-
dent the United States has ever
seen.Trump was goingto �x
every infrastructure problem in
the country and Make America
Great Again in the process.

KISS band members got pa-
triotic during Saturday night's
concert in Louisiana, temporar-
ily pausing the classicrock show
to lead the crowd in the Pledge
of Allegiance. After �nishing up
their signature song, (I Wanna)
Rock and Roll All Nite at the
Gretna Heritage Festival, gui-
tarist Paul Stanley thanked the
U.S. military and gave a shout.?

y
?
y

the trump kiss to donald members rock wanna promises
Document 1 6 2 1 2 1 0 0 0 2
Document 2 6 0 0 1 0 1 2 1 0
...

Table 8: A simpli�ed illustration of bag-of-word uni-grams for two documents.

4.1.1 Features

In our systems, we used the following features for bag-of-words/characters:

� Character 1-to-3 grams (uni-grams, bi-grams, tri-grams).

� Character 3-to-5 grams (tri-grams, four-grams, �ve-grams).

� Su�x of a word (the last 1-to-3 and/or 1-to-4 character n-grams of a word).

� Pre�x of a word (the �rst 1-to-3 and/or 1-to-4 character n-gram of a word).

� Word uni-grams.

For the pre�xes and su�xes, we tried several set-ups:

� Pre�xes with 1-to-1, 1-to-2, 1-to-3 and/or 1-to-4 characters.

� Tri-gram pre�xes (f.i., Tru , derived from Trump).

� Four-gram pre�xes (f.i., Trum, derived from Trump.

� Both 1-to-3-gram pre�xes and 1-to-4 pre�xes. The former would beT, Tr , Tru and
the latter T, Tr , Tru , Trum for the word Trump.

Hyperpartisan News Detection 24/80

In order to vectorize the documents, we applied Term Frequency{inverse Document
Frequency (tf-idf) (Jones, 1972) weighting on the word frequencies in the documents. This
is a popular alternative to using the normal counts of the documents, because it allows
to give a larger weight to rare words and to e�ectively ignore common words (i.e., stop
words and function words). We used the tf-idf vectorizer in scikit-learn2 and tuned the
parameters of the vectorizer with a Grid-search. We describe this procedure in more detail
in Chapter 5.

4.2 Bag-of-clusters

The second technique has been explained in the work of Kim et al. (2017) and Turian
et al. (2010), where it is presented as an alternative vectorization method to bag-of-words.
The authors referred to this technique as bag-of-concepts, but we will refer to it as bag-
of-clusters. This term seemed more suitable to us because it is immediately clear that the
method is about groups of words (`clusters').

We illustrate the procedure to vectorize documents as bag-of-clusters in Figure 4. The
�rst step is to take a word embedding model (described in Section 4.3) trained on large
corpus of texts, as showed in the left graph of the �gure. The next step is to apply a
clustering technique, such ask-means, on top of these word embeddings. The result of this
procedure is shown on the right of the �gure, which shows groups or 'clusters' of words
that are related to each other. For instance, one of the clusters contains the wordsgerman,
english, dutch, spanish and french. These words are related to each other because they refer
to natural languages. Clusters such as this one can then be used to vectorize documents
by counting for each cluster how many words of that cluster occur in a document. This is
illustrated in the table in Figure 4.

There are several strong points of the bag-of-clusters method compared to the previous
representation technique that we presented. One is that the procedure yields denser vectors,
since the length of each vector will be determined by the amount of clusters that we use.
Especially when large collections of documents are used, this will result to less sparse
vectors than when using bag-of-words, where the length of the vector is equal to the
vocabulary size. The second advantage is that the representations encode semantic features
of a document, since we are grouping words by their semantic similarity/relatedness while
preserving the same level of interpretability of the bag-of-words method. The third bene�t
is that this method is more robust towards unseen words than bag-of-words. There are
two reasons for this. First, the clusters are generated on word embeddings in vector
spaces which are created with large corpora. Therefore, it is likely that there are words
in the clusters that do not occur in the training data. This tackles the problem of out-of-
vocabulary words in the test data. Secondly, since we work with clusters, words that occur
in the same cluster will be treated the same.

In addition to these advantages, there was another reason why we decided to use bag-of-

2https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html

Hyperpartisan News Detection 25/80

spain

germany

uk
belgium
netherlands

spanish

german

english

french

dutch
brown

black

blue

white

yellow

spain

germany

uk
belgium
netherlands

german

english

french

dutch
brown

black

blue

white

yellow

spanish

1. Train word vectors from collection of documents 2. Apply cluster algorithm to create clusters

Cluster 1

Cluster 2

Cluster 3

3. Vectorize documents as frequencies of

each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 ...
Document 1 18 1 2 4
Document 2 0 5 6 3
...

Figure 4: An intuitive illustration of bag-of-clusters. The left graph represents a simpli�ed
word embedding model. The graph on the right shows the result of applying a cluster algorithm
on the word embeddings. The table presents a �ctive example of two documents vectorized as
bag-of-clusters.

clusters as one of our document representation techniques. Namely, it seemed reasonable
why vectorizing documents as bag-of-clusters could be e�ective for hyperpartisan news
detection. The idea was that if there are clusters (i.e., groups of words) that occur more
frequently in hyperpartisan than in mainstream news, then it should be possible to train an
accurate classi�er on bag-of-clusters. Besides, a similar e�ect has been noted in previous
experiments with bag-of-clusters in other tasks, such as in opinion mining (Agerri and
Rigau, 2018). Thus, bag-of-clusters seemed to be an interesting alternative vectorization
procedure to bag-of-words.

4.2.1 Data and Methods

We present an overview of the three types of clusters that we used in Table 9. The clusters
were trained on either one of the following datasets: the Wikipedia dataset using Wikipedia
(20121208), the fake news dataset from Kaggle3 or the by-publisher data from the shared
task (both the training and validation set, see Chapter 3). We decided to work with these
clusters because of their domain di�erences. The clusters of the by-publisher data are the
most related to our data, whereas the remaining clusters are less related. Besides, the

3Dataset available onhttps://www.kaggle.com/c/fake-news .

Hyperpartisan News Detection 26/80

Wikipedia clusters contain the most words, even more words than the clusters that we
trained on the by-publisher data. By comparing the performance of these three clusters,
we were able to �nd out whether it would be possible to use bag-of-clusters when the
data is too small to train word embeddings and clusters. This could happen when there is
classi�cation problem of which there is only a small amount of data available for training
and testing. With this set-up, we were also able to investigate the importance of the
association between the task and the corpus of the clusters. In other words, we could �nd
out what would be the most important component to e�ectively use bag-of-clusters: the
domain that it used or the size of the corpus that we used to obtain clusters.

Corpus
Corpus
size

Amount of
clusters

Word embed.
dimensions

Words

By-publisher training
+ validation

498M
Min: 100
Max: 800

50, 300 661501

Wikipedia (20141208) 1700M
Min: 100
Max: 500

50,100,150,200 2053053

Fake news (Kaggle) 23M
Min: 100
Max: 800

50,300 68455

Table 9: A description of the clusters that we used to represent documents as bag-of-
clusters. All clusters were applied on word embeddings trained with Word2vec. The
amount of words represent the number of words that occur in each cluster �le in either the
wikipedia, hyperpartisan or fake news cluster �les.

As mentioned in Table 9, all word embeddings that we used to create clusters were
trained with Word2vec (Mikolov et al., 2013; Mikolov, 2013). We explain this technique
later in this chapter (see Section 4.3.2). For now, it is su�cient to know that the dimensions
that we presented in Table 9 refer to the dimensions of the word embeddings trained with
Word2vec (using the Skip-gram algorithm). Furthermore, the clusters were created with
k-means (MacQueen, 1967). This algorithm can be used to cluster data intok number of
groups or clusters. The value fork is de�ned before obtaining the clusters (i.e.,apriori).

We worked with 16 �les for the clusters that we trained on the by-publisher data. Half
of these �les contained the clusters that were generated on the word embeddings with
50 as their dimension. The other half were generated on the word embeddings that had
a dimension of 300. We had 8 �les of each of them because we worked with �les that
contained 100, 200, 300, 400, 500, 600, 700 or 800 clusters. Each �le contained 661501
words. The fake news clusters were divided in a similar manner, but contained 68455
words per �le. The reason is the lower size of the fake news dataset. The Wikipedia
clusters however were organized in a di�erent way than its counterparts. We worked with
six �les of which each contained 400 clusters. Half of these clusters were obtained on word
embeddings trained on a window of 10 tokens. The dimension of the embeddings of each
�le was: 100, 150 and 200. The remaining three �les were obtained on word embeddings
trained with a window of 5 tokens. The dimension of the word embeddings of the clusters

Hyperpartisan News Detection 27/80

of each �le was: 50, 100 and 150. In addition, we also worked with one �le that contained
500 clusters, trained on embeddings with a dimension of 50 and a window size of 5. Each
�le of the Wikipedia clusters contained 2053053 words.

Finally, the clusters that we used in this project (see Table 9) were already available on
the server of the university of the Basque Country. Using these �les, we obtained the word
representation for the current wordw in documentd by using a simple look-up system: we
checked for the current lowercased wordw if the word occurred in the clusters. If this was
the case, then we took the cluster number as a feature (i.e., used in the header of the table
in Figure 4). When there was no match, then we did not store any value for the word in
the document-term matrix. In this way, we could encode for each document how often a
cluster occurred in a document. After obtaining the counts, we applied tf-idf weighting to
obtain a �nal vector representation of the documents. Thus, we used the same procedure
as for the bag-of-words (described in Section 4.1).

4.3 Word Embeddings

Word embeddings are word representations ofk-dimensional vectors of real numbers. The
current techniques to create those word embeddings, such as Word2vec and GloVe, allow
to encode the meaning of the words. When these word embeddings are used to vectorize
documents, we are able to capture the meaning of the words. This has powerful bene�ts
compared to bag-of-words, where there is no notion of the meaning of words and their
semantic relatedness.

The rest of this section consists of two parts. In Section 4.3.1, we present the materials
that we used to work with word embeddings in our experiments. In the other sections,
we briey explain the techniques which were used to create the word embeddings that we
use in our study: Word2vec (in Section 4.3.2), GloVe (in Section 4.3.3) and FastText (in
Section 4.3.4).

4.3.1 Materials

We present a complete overview of the word embeddings that we used in Table 10. We
worked with two types of word embeddings. The �rst were pre-trained word embeddings,
which were provided on the web and trained by other researchers. These word embeddings
are described in the �rst �ve rows in Table 10. They were trained with Word2vec, FastText
or GloVe. The second type of word embeddings that we used were the ones that we
trained. These word embeddings are described in the last row of the table. We trained
these word embeddings on the complete by-publisher training set (see Chapter 3) using
FastText. We chose to train them with FastText because we obtained the highest results
with this technique when we were using the pre-trained word embeddings (see Chapter
6). In particular, we trained our word embeddings with the same settings as the FastText
word embeddings trained on Common Crawl. Therefore, we trained our word embeddings
with CBOW. This could easily be done with the FastText package4.

4 https://fasttext.cc/docs/en/unsupervised-tutorial.html

Hyperpartisan News Detection 28/80

Method Training data Words Vocabulary size
Word2vec Google News 100B 3M

FastText
Wikipedia (2017)
stamt.org news dataset
UMBC webbase corpus

1M
16B

1M

FastText Common Crawl 600B 2M

GloVe
Wikipedia (2014)
Gigaword 5th edition

6B 400.000

FastText By-publisher training 374M 761.343

Table 10: An overview of the word embeddings that we used. All word vectors had a
dimension of 300. We show the size in million or billion words.

We applied a simple procedure to use the word embeddings to create document rep-
resentations. The �rst step involved obtaining a vector representation for each wordw
in document D. Then, we obtained a vector for the whole document by averaging the
vectors of the words in a document (Kim et al., 2017; Xing et al., 2014). We repeated this
procedure twice: once to experiment with stop words removal and once to experiment with
lower casing the words.

There are two important advantages of using word embeddings to build document rep-
resentations. The �rst is speci�cally related to the way how we create the document repre-
sentations from the word embeddings. Since we obtain the document vector by averaging
all the word vectors, we are able to obtain a dense vector representation. In particular, it is
the most dense representation compared to the bag-of-words and bag-of-pre�xes. Another
advantage of using word embeddings is that it is more robust towards unseen words in the
test set than for instance bag-of-words. Similar to the bag-of-clusters method, we relied on
additional resources to obtain a vector representation. These resources were created from
large corpora.

4.3.2 Word2vec

Word2vec (Mikolov et al., 2013; Mikolov, 2013) is a collection of tools that can be used
to compute continuous vector representations of words from large datasets (\word embed-
dings"). The most important idea of Word2vec is that word vectors that share common
contexts in the training data are located in close proximity to one another. In other terms,
words that are surrounded by the same words have the same meaning, and should there-
fore be positioned closely together. Thus, the underlying principle of word embeddings
that are generated by Word2vec is based on distributional semantics, which implies that
the meaning of words can be derived from the context in which they appear in (where
the context is de�ned as their surrounding words) and that words with a similar meaning
occur in a similar context. Hence, words with similar contexts will have similar numerical
representations.

In Word2vec, the distributed representations of words are learned by a two-layer feed-

Hyperpartisan News Detection 29/80

forward neural network. The input of this neural network is a preferably large text corpus
and the output is a set of vectors for words. To create the word embeddings, the network
performs two steps. First, it is trained to predict words/a word for a certain task. There
are two kinds of task that can be used for this purpose. In the �rst, the task is to train the
neural network to predict the current word based on its context (i.e., the words surrounding
the current word). The algorithm that uses this task is called continuous bag-of-words
(CBOW). The other task is similar, but instead of predicting the current word based on
the context, it tries to predict the surrounding words (i.e., the context) given the current
word. This variant is called skip-gram. Once either of the tasks is completed, the weight
matrix that was learned in the hidden layer is used to form the word embedding: each row
for a word will be the word embedding of that given word.

There are two important parameters that the user needs to set when training word
embeddings: the window size and the dimensions of the word embeddings. The former
refers to the amount of words that would involve the context in the algorithms. Usually,
this value is set to �ve, as based on a rule of thumb. Furthermore, the dimensions of the
word embeddings is about the size of the embeddings. In general, the larger the vectors,
the more information can be encoded. The most commonly used value is 300 (Yin and
Shen, 2018).

4.3.3 GloVe

Both the CBOW and the skip-gram architecture of Word2vec have shown promising per-
formances in NLP tasks. However, one of the weaknesses of Word2vec is that it does not
e�ectively make use of global statistics, since its algorithms are trained to predict local
contexts. One technique that does take advantage of global count statistics is GloVe (Pen-
nington et al., 2014), which stands for Global Vectors for Word Representation. GloVe is a
count-based model that learns the representation of a word by constructing a co-occurrence
matrix which counts how frequently a word appears in a certain context in the corpus. This
idea is based on techniques that use matrices with global count information to vectorize
documents (i.e., global vectorization methods), as in Latent Semantic Analysis (Landauer
et al., 1998). Here, the main idea is that words have `a similar' meaning when they oc-
cur in the same contexts. This means that the ratios of the co-occurrence probabilities
should be approximately the same. For instance, we would expect words related to water
to appear equally in the context of ice and scream, and thus they would have a similar
co-occurrence ratio. To account for co-occurrences that occur infrequent and tend to be
noisy and unreliable, the authors apply a weight function to weight the occurrences. Then,
the result can be used as a vector representation.

4.3.4 FastText

FastText (Bojanowski et al., 2017; Joulin et al., 2016) is another technique to create word
embeddings. Word embeddings that are trained with FastText are robuster towards out-
of-vocabulary words than Word2vec and GloVe, as words are represented as character

Hyperpartisan News Detection 30/80

n-grams. In particular, words are portrayed as a bag of character n-grams, where the
overall word embedding is the sum of these character n-grams. For example, for the
word where and n=3, the representation consists of the following: < wh, whe, her, ere,
re> . The symbols< and > are boundary symbols, thus indicating the beginning and the
end of words. This allows to distinguish pre�xes and su�xes from the other character
n-grams. Moreover, the word itself,where is also used. Hence, in addition to character
n-grams, FastText also learns a representation for the corresponding word. Then, to build
a representation, FastText uses the same skip-gram algorithm with negative sampling from
Mikolov (2013). The only di�erence is the method that is used to compute the similarity
between the target word and the context word within the context. Instead of using the dot
product between them, the dot product between two words represented as sums of n-grams
is used.

4.4 Contextual Character-based Embeddings

One fundamental problem of the models that we presented to train word embeddings is that
they generate the same embedding for the same word in di�erent contexts. For instance,
the word bank will have one vector, despite the di�erent meanings of the word. The
word bank can namely be used to indicate a�nancial institution or refer to a river bank.
Nonetheless, this issue has recently been addressed by researchers that aimed to develop
so-called contextual word embeddings (Peters et al., 2018). In our study, we work with
another interesting type of embeddings that were developed to tackle this issue, namely
Flair embeddings (Akbik et al., 2018). We briey describe this technique in Section 4.4.1
and present the methods that we used in Section 4.4.2.

4.4.1 Flair Embeddings

The authors of Flair (Akbik et al., 2018) propose a method of which the end product is
a collection of contextualized character-based embeddings. The most important aspect of
their approach is that it models words and their context as sequences of characters. Thus,
words are represented as sequences of characters in context (the characters of the word plus
the surrounding words). In order to do this, characters are used as the atomic units of a
language model. This is achieved by passing a sequence of characters into a Long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997), that predicts the next character for
each character in the sequence. Akbik et al. (2018) use a forward and a backward language
model. In the �rst, states of the LSTM aims to capture the probability distribution of
the characters given the previous characters. In the latter, the predictions are computed
the other way around: the LSTM learns how to predict the upcoming characters given the
previous characters. Then, the authors concatenate the following properties:

� \From the forward LSTM, we extract the output hidden state after the last character
in the word. Since the LSTM is trained to predict likely continuations of the sentence
after this character, the hidden state encodes semantic-syntactic information of the
sentence up to this point, including the word itself" (Akbik et al., 2018, p.4).

Hyperpartisan News Detection 31/80

� \From the backward LSTM, we extract the output hidden state before the word's
�rst character from the backward LSTM to capture semantic-syntactic information
from the end of the sentence to this character" (Akbik et al., 2018, p.4).

The output states are subsequently concatenated to form the �nal embedding that captures
the semantic information of a word and its surrounding context.

Figure 5: The procedure of creating the contextual string embedding for the wordWash-
ington from Akbik et al. (2018, p.4).

We show an example of how the embedding for the wordWashington is build in Figure
5. The sentence is passed as a sequence of characters in a character-level language model
to form embeddings. The forward LSTM is depicted by the arrow that points to the right.
The output hidden state is extracted after the last character of the word. The backward
LSTM is presented by the arrow that points to the left. Here, the authors extract the
output hidden states before the �rst character. Then, the output states are concatenated.

4.4.2 Methods

We worked with pre-trained Flair embeddings in this project. In order to use these embed-
dings, we loaded them through the package Flair (Akbik et al., 2018). Flair is a recently
developed toolkit that can be used to conduct several NLP tasks (e.g., text classi�cation,
sequence labeling) with state-of-the-art results. One interesting aspect is that Flair has a
simple interface to load and combine static word embeddings (e.g., Word2vec, GloVe and
FastText) and contextualized embeddings.

According to Akbik et al. (2018), Flair embeddings work the best when they are used
in combination with other word embeddings, to which they can be concatenated. We
therefore decided to use the best pre-trained word embedding model (either trained on
Word2vec, GloVe or FastText) in combination with the Flair embeddings. We also decided
to combine the Flair embeddings with the character embeddings from Lample et al. (2016).
These character embeddings are similar to Flair embeddings, since they use characters to
form representations of sequences. The main di�erence is that the character embeddings
from Lample et al. (2016) are not pre-trained such as Flair, but that they are trained on

Hyperpartisan News Detection 32/80

data of the current task. Therefore, they are able to capture task-speci�c features and can
e�ectively complement the Flair embeddings. Besides, the developers of Flair, Akbik et al.
(2018), conducted experiments with these character embeddings and Flair embeddings.
They obtained better results with the systems that used Flair and character embeddings
than the systems that only used Flair embeddings.

4.5 Summary

In this chapter, we presented several techniques that we used to vectorize documents for
hyperpartisan news detection: bag-of-words/characters, bag-of-clusters, word embeddings
and contextual character-based embeddings. We also showed the features and materials
that we employed to create these representations. In the next chapter, we explain how we
used the presented document representation techniques for hyperpartisan news detection
and how we conducted feature selection to make e�cient document representations.

Hyperpartisan News Detection 33/80

5 Experimental Set-up

In this chapter, we describe how we employed the document representation techniques
that we presented in the previous chapter to train classi�ers for hyperpartisan news detec-
tion. We show the two supervised classi�cation techniques and describe the general set-up
that we used in this study. The latter implies that we explain how we selected the best
classi�ers and how we continued to evaluate them in other set-ups. We also outline the
additional/local features that we used, which we selected based on the work presented in
Chapter 2.

5.1 General Set-up

The aim of the current work is to �nd the best classi�er that distinguishes between hyper-
partisan and mainstream news using the datasets described in Chapter 3. We de�ne our
best model to be the system that has the highest accuracy score on the by-article test set,
following the o�cial shared task. In addition, we worked with two supervised classi�cation
approaches: Support Vector Machines (SVM) and Recurrent Neural Networks (RNN). We
discuss each technique in Section 5.3 and 5.5 respectively. In the rest of the current section,
we outline how we evaluated the classi�ers within the two approaches.

We selected the best SVM classi�ers via 5-fold cross-validation (see Section 6). We
trained our classi�ers twice: once on the by-article training set and once on the by-publisher
subset. Then, we evaluated the best classi�ers of each dataset through two set-ups: in-
domain and across-datasets. The in-domain evaluation procedure implied that we tested
the classi�er on a test set derived from the same corpus. Thus, the classi�ers that we trained
on the by-article training set were evaluated on the by-article test set, while the systems
trained on the by-publisher subset were evaluated on the by-publisher test set (see Chapter
7). In contrast, the evaluation across-datasets implied that we trained our systems on data
from one corpus and tested it on data from the other corpus of the hyperpartisan news
datasets. Hence, the classi�ers that we trained on the by-publisher subset were evaluated
on the by-article test set. In turn, the classi�ers that we trained on the by-article training
set were evaluated on the by-publisher subset (see Chapter 8).

We conducted a similar procedure to evaluate the performance of the Recurrent Neural
Networks, as we evaluated them in-domain and across-data as well. However, there are
three di�erences in the experimental set-up. The �rst is that we only trained the classi�ers
on the by-article training set. The second di�erence is that we used a di�erent procedure
than cross-validation to select the best classi�er, which we further describe in Section
5.5. Thirdly, we decided to only evaluate the best classi�er from our model development
experiments for further evaluation in-domain and across-datasets. Therefore, we tested
our best classi�er in-domain by evaluating it on the by-article test set and across-datasets
by testing it on the by-publisher test set.

Finally, after de�ning the best systems on the by-article test set, we evaluated the
best SVM and Recurrent Neural Network classi�er across-datasets by testing it on the
by-publisher test set. We also performed an additional evaluation procedure, which we

Hyperpartisan News Detection 34/80

refer to as out-of-domain evaluation. In this evaluation procedure, we used the features of
the classi�ers with the most promising results according to our observations on the fake
news dataset of P�erez-Rosas et al. (2018). We further describe this experiment in Chapter
8.

5.2 Baseline and Evaluation Metrics

As mentioned previously, we evaluated our SVM classi�ers through 5-fold cross-validation.
For the in-domain evaluation set-up and the evaluation across-datasets, we additionally
used the precision, recall and F1-score as shown below. It is important to bear in mind
that we work with a binary classi�cation task in which we either predict hyperpartisan
news or non-hyperpartisan news.

accuracy=
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F 1 =
2 � precision � recall
precision + recall

(4)

As a baseline, we used the classi�er submitted to the o�cial shared task before starting
this project. This classi�er was trained on the complete by-publisher training data and
only used the negative sentiment from VADER (Hutto and Gilbert, 2014). We describe
this type of feature later in Section 5.4. We show the scores of this baseline system on
the by-publisher and the by-article set in Table 11. It obtained the 30th place out of 42
participants on the by-article test set and the 20th position out of 28 submissions on the
by-publisher test set. We mainly decided to use this system as our baseline because of
its simplicity and the relatively low positions that it obtained on both test sets in the
competition.

by-article test set by-publisher test set
Accuracy 0.621 0.589
Precision 0.582 0.575
Recall 0.860 0.681
F1-score 0.694 0.623

Table 11: The performance of the baseline system that only uses the negative sentiment
of a text as features. The system is trained on the complete by-publisher training set.

Hyperpartisan News Detection 35/80

5.3 Approach 1: Classi�cation with a SVM

A Support Vector Machine (SVM) is a popular binary classi�cation technique. The algo-
rithm has been successfully employed in several text classi�cation tasks, such as sentiment
analysis (Jahdav and Vaghela, 2016; Mullen and Collier, 2004; Zainuddin and Selamat,
2014), stance detection (K•u�c•uk and Can, 2018), opinion mining (Sabuj et al., 2017), au-
thorship attribution (Diederich et al., 2003) and named entity recognition (Ekbal and
Bandyopadhyay, 2010). In Chapter 2, we have seen that they have also proved to be useful
for fake news classi�cation. Because of this, we decided to use this classi�cation technique
as one of the two main approaches in this thesis.

A SVM (Vapnik, 1995) performs classi�cation by creating a line or hyperplane that
separates the data into two classes. This is done by trying to �nd the best separating
hyperplane such that the distances between the data points of the two classes is maximized.
The best separating hyperplane is determined by support vectors, which are the critical
elements of the training set. The C-parameter of the SVM constructs this hyperplane. In
particular, the C-parameter of the SVM classi�er determines how much this hyperplane is
allowed to make misclassi�cations: the higher the value of the C-parameter, the more the
optimization procedure tries to create a hard margin that does not make any errors. The
lower the C-value, the more the SVM attempts to create a wide margin, and the less strict
it is towards making errors. Thus, the C-parameter can a�ect the ability of the classi�er
to generalize on unseen data, and its robustness.

We use theLinearSVC implementation of Pedregosa et al. (2011) inscikit-learn 5.
Hence, we worked with Linear SVMs, which means that the hyperplane separates the data
of the two classes in a linear manner. We decided to work with this type of SVM because
they were also used in previous studies (see Chapter 2). We conducted a few experiments
with non-linear SVMS using rbf-kernels. However, the results were not signi�cantly higher
than the ones obtained with linear SVMs. Besides, training SVMs with rbf-kernels is more
time consuming than training linear SVMs.

5.3.1 Feature Selection for Document Representations

We tested three of our document representation techniques in SVMs: bag-of-words, bag-
of-clusters and word embeddings. In particular, we started testing each technique in a
SVM without using additional features. In these experiments, we conducted 5-fold cross-
validation to select the best features and/or corpora to work with:

� Bag-of-words using the features described in Section 4.1, such as characters, pre�xes
and words.

� Bag-of-clusters, using the clusters described in Section 4.2.

� Word embeddings, using the materials described in Section 4.3.

5https://scikit-learn.org/stable/index.html

Hyperpartisan News Detection 36/80

We trained classi�ers on the by-article training data and on the by-publisher subset respec-
tively. Afterwards, we selected the best bag-of-words, bag-of-clusters and word embeddings
classi�er of each dataset for in-domain evaluation and evaluation across-datasets. Once we
found the best bag-of-words, bag-of-clusters and word embedding classi�ers on the two
datasets via 5-fold cross-validation, we tried to improve the accuracy of these models by
adding the features that we present in Section 5.4 and/or by combining document repre-
sentations.

5.3.2 Pre-processing and Parameter Tuning

Pre-processing The by-article training set was provided in XML-�les of which we ex-
tracted the body of the documents and their corresponding labels. We did not further
clean the documents, as the documents were reasonably clean. The data of the by-publisher
subset already contained the extracted documents from the XML-�les. Similar as to the
by-article training set, we used the body of the documents. As there was still a substantial
amount of noise in the documents of the by-publisher subset, we performed a few clean-
ing procedures to remove the remaining HTML tags in the documents. We additionally
removed random occurrences of question marks in the body of the documents.

Parameter Tuning We tuned two types of parameters: the C-parameter of the SVM
classi�er and the parameters of the tf-idf vectorizer. We performed parameter tuning with a
grid-search6 using the values described in Table 12. Furthermore, we tuned the parameters
of the following systems on the by-publisher subset and the by-article training set:

� The best bag-of-words classi�er.

� The best bag-of-clusters classi�er.

� The best classi�er using linguistic features.

These classi�ers were the systems with the highest accuracy on 5-fold cross-validation, in
which they were using the default settings of the SVM and the tf-idf vectorizer.

Note that the linguistic features belong to the additional features and that we will
describe them in Section 5.4. Since the linguistic features are represented by n-grams and
tf-idf weighting, we decided to tune the parameters of these features as well. As a point
of departure, we experimented with uni-grams, bi-grams and tri-grams via 5-fold cross-
validation on both datasets. Once we found the best value forn via 5-fold cross-validation
for the by-publisher subset and the by-article set, we used a grid-search to tune the tf-idf
vectorizer parameters and the C-parameter to optimize the performance. The values that
we used to perform the grid-search were the same as presented in Table 12.

6https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html

Hyperpartisan News Detection 37/80

Name Values Description
lowercase True, False Lowercases the words
min df 1,2,3 Excludes terms that appear in fewer than n documents
sublinear tf True, False Replaces term frequency with 1 + log(tf)
useidf True, False Enables inverse-document-frequency reweighting
C 0.01, 1.0, 100 The C-parameter of the SVM

Table 12: The values over which we performed the grid-search to tune the parameters of
the tf-idf vectorizer and the C-parameter of the SVM.

5.4 Additional Features for the SVMs

After obtaining the best SVM classi�ers using either of bag-of-words, bag-of-clusters or
word embeddings, we tried to increase the performance of the SVMs by adding of local
features and/or by combining the most e�ective document representations. In this section,
we describe the local features that we used for this purpose. We selected a collection
of features that were mentioned to be e�ective for related tasks to hyperpartisan news
detection presented in Chapter 2. The features that we continued to experiment with in
our study can be divided into three distinct groups: sentiment features (see Section 5.4.2),
linguistic features (see Section 5.4.2) and stylistic features (see Section 5.4.3).

5.4.1 Sentiment Features

In order to extract the sentiment of each document, we worked with dictionary-based
features and automatic approaches. The latter implied that we usedNLTK, in particular
the VADER sentiment analysis tool (Hutto and Gilbert, 2014) to compute the sentiment
score of each document7. Valence Aware Dictionary for Sentiment Reasoning (VADER) is
a simple rule-based model for sentiment analysis that represents the intensity the sentiment
of a document by calculating a negative, positive and neutral sentiment and a compound
score. The tool was constructed by using a combination of qualitative and quantitative
methods that led to an empirically validated gold-standard list of lexical features along
with their sentiment intensity measures. Then, these features were used in �ve di�erent
rules that consider grammatical and syntactic aspects to further determine the intensity
of a sentiment.

We conducted experiments with the positive, negative and compound score. We sur-
mised that mainly the positive and negative score could help to indicate bias in the texts.
In addition, the compound score seemed to be useful because it allows to compute the sen-
timent of a text in a single one-dimensional metric and encodes both the neutral, positive
and negative scores. The latter was computed by summing up the valence scores of each
word in the lexicon. Then, the result was adjusted according to the rules and normalized
to be between -1 (most extreme negative) and 1 (most extreme positive). The positive and
negative scores were expressed in percentages. Thus, with the neutral sentiment, the sum

7https://www.nltk.org/_modules/nltk/sentiment/vader.html

Hyperpartisan News Detection 38/80

of the positive, negative and neutral sentiment should sum up to 1. We experimented with
the following set-ups using:

� only the negative sentiment

� only the positive sentiment

� only the compound score

� both positive and negative score

� the positive score added to the negative score.

In addition to VADER, which proved to be useful for bias detection in news reports
(Hutto and Gilbert, 2014), we also tried to capture the sentiment of texts by using lexicons
with positive and negative words. More speci�cally, we worked with the lexicon of positive
and negative words from Liu et al. (2005). We used this lexicon because it was also used
in previous studies, such as in the work of Recasens et al. (2013).

We worked with two methods to use the sentiment of the texts as features. In the �rst,
we followed the binary representation method described in Recasens et al. (2013). This
implied that if a word from a document occurred in the list of positive words, then the
value for positive sentiment would be set to `true', and the same would be done for the
negative words. The second type of feature representation involved counting the amount
of positive or negative words. In particular, we represented the intensity of the negative
sentiment by using the total number of negative words occurring in the document from the
lexicon. We repeated the same procedure to calculate the negative sentiment by counting
the total amount of words occurring in the lexicon of negative sentiment words.

5.4.2 Linguistic Features

The linguistic features that we used in this study involved experimenting with Part-of-
speech (POS) n-grams. In previous studies, we have seen that tri-grams and uni-grams
were particularly useful for this purpose (Horne and Adali, 2017; Recasens et al., 2013).
These studies showed that writers can use several linguistic devices to express bias, such as
the adjectivesgreat, beautiful, goodand intensi�ers such asvery. When these devices are
used to express bias, they speci�cally occur in combination with nouns denoting names,
organizations, objects, decisions, etc. On the other hand, in mainstream texts, authors
could use speci�c words to denote objectivity, such asmight, could. Furthermore, one
could use speci�c POS tri-grams to use sources in an article, such asis said to be.

5.4.3 Stylistic Features

We additionally experimented with features that aimed to capture the stylistic elements of
the texts. One method how we did this was by looking at the usage of certain words in the
texts. In this light, we considered two groups of words: assertive verbs and factive verbs

Hyperpartisan News Detection 39/80

(Hooper, 1975). Our decision to use them was based on their motivation and presented
results of Recasens et al. (2013). We used a list of assertive and factive words that we took
from Wyse (2009), since there was, to the best of our knowledge, no other way to obtain
the lexica. The list of assertive verbs included 65 verbs such asclaim, predict, believe,
think, suppose, expect, decide. The list of factive verbs contained 63 words, such asrealize,
remember, amuse.

Another method that we applied to capture stylistic elements was by using readabil-
ity scores. We decided to use these scores because biased texts tend to have an easier
readability level than non-biased texts, (Hutto and Gilbert, 2014; Horne and Adali, 2017;
Potthast et al., 2017). The same was mentioned about the readability level of fake news
compared to legitimate news (P�erez-Rosas et al., 2018). Following these works, we decided
to experiment with the following readability metrics: Flesh Kinchaid Grade (Kincaid et al.,
1975), the Automated Readability Index (Smith and Senter, 1967), the SMOG readabil-
ity index (McLaughlin, 1969) and the Gunning Fog Grade Readability Index (Gunning,
1952). We used the implementations of the packagetextstat 8 to compute the readabil-
ity scores. We tested the performance of each metric individually on both the by-article
and by-publisher subset. We subsequently conducted experiments on both datasets where
we used all readability metrics.

5.5 Approach 2: Classi�cation with Recurrent Neural Networks

Apart from that neural networks have revolutionized machine learning, there were three
speci�c reasons why we decided to work with them in this project. The �rst was that it
seemed interesting to test the best word embeddings from the experiments with SVM in a
di�erent classi�cation technique. This would enable us to shed more light on the individual
performance of the two classi�cation techniques when using word embeddings. Secondly,
using neural networks would allow us to build document representations from embeddings
with a more sophisticated method than simply averaging the vectors. The third reason
was that we were interested in working with contextual character-based word embeddings,
in particular the Flair embeddings (see Section 4.4.1). The most e�cient method to work
with these Flair embeddings was by using the text classi�ers provided in the Flair package,
which rely on neural networks.

In Flair, there are several ways to use word embeddings to build document repre-
sentations for text classi�cation, including the method that we used to form document
embeddings in SVMs (see Section 4.3). However, as mentioned previously, we decided to
use a di�erent method to create document representations. The procedure that we used
involved the usage of document embeddings through Recurrent Neural Networks. The �rst
step was to create document embeddings by using the document embeddings object from
Flair9 using the default settings. Because of this, the gated recurrent unit (GRU) was
used as the type of the RNN. After obtaining the document embeddings, the next step by

8https://pypi.org/project/textstat/
9https://github.com/zalandoresearch/Flair/blob/master/resources/docs/

TUTORIAL_5_DOCUMENT_EMBEDDINGS.md

Hyperpartisan News Detection 40/80

default was to feed these word embeddings to a linear neural network layer that predicts
the class10. We used GPUs to train the models, which were available at the University of
the Basque Country.

Furthermore, training and evaluating a classi�er with Flair requires the usage of a
training, development and test set. Because of this, we divided the by-article set into a
training set (516 documents, 80%), a development set (65 documents, 10%) and a test set
(64 documents, 10%). We used the strati�ed sampling technique fromscikit-learn 11 to
have an approximately equal amount of instances from the hyperpartisan and mainstream
class in the three sets. Furthermore, the performance was evaluated using the precision,
recall, and F1-score as presented in Section 5.2. While Flair provides the micro and macro
accuracy, we decided to use only the micro accuracy because of the imbalanced frequency
distribution of the classes in the by-article training set.

Once we found the best classi�er from the development experiments, we trained this
classi�er for another four times. Afterwards, we selected the best model out of these
runs for further evaluation on the o�cial by-article test set (in-domain evaluation). The
best model was determined by the accuracy on the predictions of the test set derived
from the by-article training set. We decided to use this procedure because deep learning
architectures tend to produce di�erent outcomes for each experiment.

5.5.1 Feature Selection

We trained three classi�ers on each of the following set-ups:

� The most e�ective word embeddings from our SVM experiments. In our case, these
were the FastText word embeddings trained on Common Crawl.

� Two character-based contextual Flair embeddings (flair-news-forward-fast)
and (flair-news-backward-fast)12 plus the previous features.

� The character embeddings from Lample et al. (2016) and the two types of Flair
embeddings.

The �rst set-up allowed us to compare the e�ectiveness of the RNN architecture to the
results of the SVM classi�ers in which we averaged the word embeddings. The second
set-up was useful to �nd out how well the best `static' word embeddings (i.e., trained with
Word2vec, GloVe or FastText) would perform when they would be combined with the two
kinds of Flair embeddings, and the other way around. We performed the latter set-up
because of the promising results of the experiments from Akbik et al. (2018).

10https://github.com/zalandoresearch/Flair/blob/master/Flair/models/text_
classification_model.py

11https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.train_test_split.html

12We had to select the `fast' version of the embeddings due to lack of GPU memory

Hyperpartisan News Detection 41/80

6 Model Development Results

In this chapter, we present the results of the experiments that we conducted to determine
the most promising classi�ers for in-domain evaluation and evaluation across-datasets on
the test sets of the competition. The purpose of the experiments that we present here was
to �nd the following classi�ers:

1. The best SVM classi�ers trained with any of the three document representations
(bag-of-words, bag-of-clusters or word embeddings), presented in Section 6.1.

2. The best SVM classi�ers trained with any of the three document representations that
we improved with additional features, described in Section 6.3.

3. The best classi�er that relied on contextual character-based embeddings using Re-
current Neural Networks, described in Section 6.4).

We �rst studied the performance of the additional features in isolation (i.e., without
using them in combination with document representation techniques), to decide which
features we should add to the classi�ers in (1). We present these results in Section 6.2.
We additionally describe the results of the experiments where we combined document
representations and additional features in Section 6.3. Note that we only show the most
relevant results of our experiments, as the purpose of this chapter is to present the most
e�ective features to the reader.

6.1 Document Representations in SVMs

We report the results of the classi�ers using any of the three document representations
that we used in SVM and presented in Chapter 4. We present the performance of these
document representations without using any other features in the classi�er.

6.1.1 Bag-of-words

We show the results of the models using the bag-of-word features described in Section
4.1 in Table 13 and 14. The former represents the results on 5-fold cross-validation for
the by-article training set. The latter outlines the results for the by-publisher subset.
We additionally present the parameter settings of each classi�er in the Tables 13 and 14.
When we mention in the tables that we used the tuned parameter settings, we mean that
we used other settings than the default values of the tf-idf vectorizer and the default value
of the C-parameter of the SVM. These settings were the result of the grid-search procedure,
described in Section 5.3.2. Moreover, when we mention that we used the default parameter
settings, we mean that the default settings were the outcome of the grid-search.

Overall, the results in the tables show that we achieved higher accuracy scores on the
by-publisher subset than on the by-article training set on 5-fold cross-validation. The
scores of the by-publisher subset varied between 0.8871 and 0.9185, whereas the accuracy
scores of the by-article training set varied between 0.7629 and 0.7891. The results also

Hyperpartisan News Detection 42/80

show that word uni-grams, character 3-to-5 grams and pre�xes (1-to-3 and 1-to-4) are
powerful features for hyperpartisan news detection. More speci�cally, we obtained the
best results with bag-of-pre�xes on the by-article training data (accuracy=0.7891). In
contrast, the best performance on the by-publisher subset was received by the classi�er
using word uni-grams (accuracy=0.9185).

Based on these results, we selected the best classi�er using bag-of-words/characters
features of each dataset for in-domain evaluation and evaluation across-datasets on the
test sets. Thus, we continued to work with pre�xes when training models on the by-article
training set. We subsequently experimented with word uni-grams when we trained classi-
�ers on the by-publisher subset. We also used pre�xes and word uni-grams in combination
with other features in the upcoming cross-validation experiments.

System
Parameter
settings

Accuracy

Pre�xes (1-to-3 and 1-to-4) Default 0.7891
Word uni-grams Tuned 0.7845
Character 3-to-5 grams Tuned 0.7815
Pre�xes (1-to-3) Default 0.7752
Pre�xes (1-to-4) Default 0.7629

Table 13: The Top 5 bag-of-word classi�ers trained on the by-article training set and
evaluated via 5-fold cross-validation.

System
Parameter
settings

Accuracy

Word uni-grams Tuned 0.9185
Character 3-to-5 grams Tuned 0.9013
Pre�xes (1-to-3 and 1-to-4) Default 0.9007
Pre�xes (1-to-4) Default 0.8908
Character 1-to-3 grams Default 0.8871

Table 14: The Top 5 bag-of-word classi�ers trained on the by-publisher subset and evalu-
ated via 5-fold cross-validation.

6.1.2 Bag-of-clusters

In this section, we present the performance of our SVM classi�ers using the clusters de-
scribed in Section 4.2, Table 9. We use a speci�c format in our tables to refer to the clusters.
In particular, the �rst component refers to the corpus on which the word embeddings were
trained, which is either the Wikipedia dataset using Wikipedia (20121208) (wiki), the fake
news dataset from Kaggle (fake) or the by-publisher training and validation set (hyp).

Hyperpartisan News Detection 43/80

Then, the name is followed by an s-number, which refers to the dimension of the word em-
beddings on which the clusters were applied. For instance, the namehyp-s50-15.400
describes a set of 400 clusters trained on the complete by-publisher training set, using 50
dimension word embeddings trained with a 5 token window.

The accuracy scores in Tables 15 to 17 reveal that bag-of-clusters is a helpful docu-
ment representation technique for our task. However, their performance on 5-fold cross-
validation is generally lower than the classi�ers working with bag-of-words (see Table 13
and 14). This is speci�cally the case for the classi�ers using the by-publisher subset, of
which the scores varied around 0.90. Moreover, the results show that the clusters generated
on hyperpartisan/mainstream news were the most e�ective. We obtained the second best
results with the fake news clusters and the lowest results with the Wikipedia clusters.

When we selected the best cluster of each table for further parameter tuning, the default
settings proved to be the best. Consequently, the hyperpartisan/mainstream news clusters
were still the best ones. Because of this, we continued experimenting with these clusters
in the remaining set-ups: in the experiments that used the best classi�ers from Table 17
of each dataset combined with additional features, in the in-domain evaluation procedure
and in the evaluation across-datasets.

System Accuracy
Wiki-s50-w5.400 0.7335
Wiki-s50-w5.500 0.7241
Wiki-s50-w5.400 0.7164
Wiki-s100-w10.400 0.7149
Wiki-s100-w5.400 0.7134

(a) Results by-article training set.

System Accuracy
Wiki-s100-w5.400 0.7745
Wiki-s100-w10.400 0.7613
Wiki-s200-w10.400 0.7600
Wiki-s50-w5.400 0.7502
Wiki-s50-w5.400 0.7498

(b) Results on by-publisher subset.

Table 15: The Top 5 results obtained with Wikipedia clusters on 5-fold cross-validation
using default parameter settings.

Cluster Accuracy
Fake-s300-w5-700 0.7629
Fake-s50-w5-600 0.7599
Fake-s300-w5-800 0.7551
Fake-s50-w5-700 0.7519
Fake-s300-w5-400 0.7505

(a) Results on by-article training set.

Cluster Accuracy
Fake-s300-w5-700 0.8123
Fake-s300-w5-600 0.8076
Fake-s50-w5-700 0.8018
Fake-s50-w5-800 0.7963
Fake-s50-w5-600 0.7953

(b) Results on the by-publisher subset.

Table 16: The Top 5 results obtained with fake/legitimate news clusters on 5-fold cross-
validation using default parameter settings.

Hyperpartisan News Detection 44/80

Cluster Accuracy
Hyp-s300-w5-700 0.7645
Hyp-s50-w5-700 0.7598
Hyp-s300-w5-500 0.7583
Hyp-s50-w5-400 0.7581
Hyp-s50-w5-800 0.7566

(a) Results on the by-article training set.

Cluster Accuracy
Hyp-s300-w5-800 0.8556
Hyp-s300-w5-700 0.8498
Hyp-s300-w5-500 0.8465
Hyp-s300-w5-600 0.8457
Hyp-S50-w5-800 0.8429

(b) Results on the by-publisher subset.

Table 17: The Top 5 results obtained with hyperpartisan/non-hyperpartisan clusters on
5-fold cross-validation using default parameter settings.

6.1.3 Word Embeddings

In this section, we present the results of the SVM classi�ers using the pre-trained word
embeddings described in Table 10. The results on the by-article training set are described
in Table 18. The results on the by-publisher subset are presented in Table 19.

In general, it can be noted that we received the best scores with pre-trained word
embeddings from FastText on both datasets. More speci�cally, the best classi�er on the
by-article training set was the one that used FastText word embeddings trained on Common
Crawl. These word embeddings also reached the highest score on the by-publisher subset.
Still, the accuracy slightly improved when we removed the stop words of the documents
(see Table 19).

Another observation is that our own trained word embeddings, which we trained on
the by-publisher training set, received a fair accuracy score. The classi�er that used these
embeddings namely obtained the third best score on the by-publisher subset (see Table
19). Still, the results of these word embeddings were not among the Top 5 best classi�ers
that we trained on the by-article training set.

In addition, the results of the di�erent pre-processing procedures that we applied show
that removing stop words helped to increase the performance for some classi�ers, but not
for all. Moreover, lowering the case of the words did not generally improve the results.
None of the results of the models that used this pre-processing procedure were among the
Top 5.

For the in-domain evaluation and the evaluation procedure across-datasets, we selected
the best classi�er from Table 18, and the best classi�er from Table 19. We also used
these classi�ers in combination with other features in the remaining experiments on 5-fold
cross-validation.

6.1.4 Overview of the Best Classi�ers

So far, we received promising results for all three document representation techniques on
5-fold cross-validation. We selected the classi�ers with the best features of each document
representation technique as a point of departure for further development and evaluation.

Hyperpartisan News Detection 45/80

Technique Corpus
Pre-processing
settings

Accuracy

FastText Common Crawl None 0.7754
FastText Common Crawl Without stop words 0.7723
Word2vec Google News Without stop words 0.7708
GloVe 840B.300D Without stop words 0.7662
GloVe 840B.300D None 0.7647

Table 18: Results for the pre-trained word embeddings for the models that we trained on
the by-article training set via 5-fold cross-validation.

Technique Corpus
Pre-processing
settings

Accuracy

FastText Common Crawl Without stop words 0.8125
FastText Common Crawl None 0.8100
FastText By-publisher training None 0.8097
Word2vec Google News Without stop words 0.8038
FastText Wikipedia None 0.8037

Table 19: Results for the pre-trained word embeddings for the models that we trained on
the by-publisher subset via 5-fold cross-validation.

In particular, the results of our experiments led us select the following classi�ers that we
trained on the by-article training data:

� The best classi�er using bag-of-words, which used pre�xes (1-to-3/4) as features.

� The best classi�er using bag-of-clusters which worked with the clusters
hyp-s300-w5-700 .

� The best classi�er using word embeddings, which worked with pre-trained word em-
beddings trained on Common Crawl with FastText (FT-Crawl).

The highest performance among these classi�ers was received by the classi�er using
pre�xes (accuracy = 0.7891). The second best result was from the classi�er using word
embeddings, namelyFT-Crawl . The lowest performance was obtained by the bag-of-
clusters classi�er, which scored an accuracy of 0.7629.

In addition, we continued experimenting with the following SVM classi�ers when work-
ing with the by-publisher subset:

� The best classi�er using bag-of-words, which used word uni-grams.

� The best classi�er using bag-of-clusters, which is the classi�er using the clusters
hyp-s300-w5-800 .

Hyperpartisan News Detection 46/80

� The best classi�er using word embeddings, which were the pre-trained word embed-
dings on Common Crawl from FastText, excluding stop words
(FT-Crawl-excl-stop-words).

The best performance was from the bag-of-words classi�er, which received an accuracy
score of 0.9185 on cross-validation. The second best accuracy score was obtained by the
classi�er using word embedding (accuracy = 0.8123). The classi�er that used bag-of-
clusters yielded the lowest performance (accuracy = 0.8123).

Hence, on both datasets, the bag-of-words classi�ers scored the best and bag-of-clusters
the lowest when they were evaluated via 5-fold cross-validation. One one hand, this pattern
seemed to be in contrast to what we expected, since it seemed more likely to use that the
dense document representations would perform better than the sparse ones. One the other
hand, we were surmising that the better performance of the sparse systems could be related
to the fact that the systems were still evaluated on a test set derived from the same corpus
as the training data. This implied that there was a low amount of out-of-vocabulary words
in the test sets in the cross-validation procedure. Therefore, we hypothesized that the
sparse representations would also receive better results than the dense representations in
the in-domain evaluation procedure. However, we surmised that we would see the opposite
pattern in the results of the evaluation procedure across-datasets.

6.2 Additional Features for SVM

Before we present the scores of the SVM classi�ers in which we combined the best classi�ers
from the previous section with additional features, we show the results of the experiments
in which we studied the individual contribution of the additional features. This will be
done in the current section.

6.2.1 Linguistic Features

The results of the experiments with linguistic features (i.e., POS tag n-grams) are shown
in Table 20. The tables reveal that POS n-grams were helpful features for hyperpartisan
news detection. In particular, the classi�ers showed a similar behavior as the ones that
used bag-of-words as features. Moreover, POS uni-grams were the best linguistic features
to predict hyperpartisan content in the by-article training data, whereas POS bi-grams
worked better on the by-publisher subset. Because of these promising results, we decided
to use linguistic features as the major method to improve the accuracy of classi�ers by
means of additional features.

Hyperpartisan News Detection 47/80

POS
sequence

Parameter
settings

Accuracy

Uni-grams Default 0.7830
Bi-grams Tuned 0.7768
Tri-grams Tuned 0.7349

(a) Results on the by-article training set.

POS
sequence

Parameter
settings

Accuracy

Bi-grams Default 0.9188
Tri-grams Tuned 0.9150
Uni-grams Tuned 0.9088

(b) Results on the by-publisher subset.

Table 20: The Top 5 results on 5-fold cross-validation of the SVM classifers using POS
features (linguistic features) with tf-idf weighting.

6.2.2 Sentiment Features

Among the sentiment features, the ones that we obtained with VADER were the most
useful. Nonetheless, the results in Table 21 show that sentiment features had minimal
predictive power when they are used without additional features (i.e., in isolation). How-
ever, at this stage of the experimental procedure, this did not rule out the possibility that
they could improve the performance of other models. Hence, despite the low predictive
power of the sentiment features on their own, we continued experimenting with sentiment
features in the experiments where we trained SVM classi�ers on document representations
and additional features.

System Accuracy
Negative sentiment 0.6326
Positive and
negative sentiment

0.6326

Positive plus
negative sentiment

0.6326

Compound score 0.6310
Positive sentiment 0.6348

(a) results on the by-article training set.

System Accuracy
Positive and
negative sentiment

0.5769

Positive sentiment 0.5703
Positive plus
negative sentiment

0.5617

Compound score 0.5268
Negative sentiment 0.5105

(b) results on the by-publisher subset.

Table 21: The Top 5 most predictive sentiment features for the classi�ers that we trained
and evaluated via 5-fold cross-validation. All features were computed with VADER (Hutto
and Gilbert, 2014).

6.2.3 Stylistic Features

The stylistic features are more e�ective on the by-article data than on the by-publisher sub-
set (see Table 22). In particular, the average accuracy scores on by-publisher varied around
0.50, whereas they uctuated around 0.63 on the by-article training data. Furthermore,
we could not increase the predictive power of the readability features by combining the

Hyperpartisan News Detection 48/80

di�erent metrics. The generally low scores discouraged us to work with stylistic features
in the classi�ers that would combine the best classi�ers of Section 6.1 and the additional
features presented in this section.

System Accuracy
Assertives 0.6310
Smog 0.6310
Automatic readability index 0.6295
Kinchaid grade 0.6279
All readability metrics 0.5833

(a) Results on the by-article training set.

System Accuracy
Flesh Easy 0.5039
Smog 0.5035
Assertives 0.5035
All readability metrics 0.5015
Kinchaid grade 0.5012

(b) Results on the by-publisher subset.

Table 22: The Top 5 most predictive stylistic features for the classi�ers that we trained and
evaluated via 5-fold cross-validation. The usage of assertives was represented by binary
representation.

6.3 Adding Local Features to Document Representations with
SVM

In the previous section, we presented the individual performance of the local/additional
features. In the current section, we describe the results of the experiments in which we
tried to �nd the three best SVM classi�ers that used the most promising local features and
at least one of the three document representation techniques. However, as we mentioned
in Chapter 5 (see Section 5.4), we also built classi�ers that combined several document
representation techniques. We will present the results of these experiments here as well.

6.3.1 Bag-of-words

We begin by showing the results of our experiments aimed at increasing the accuracy of the
best bag-of-words model on the by-article training set in Table 23. We started by adding the
best linguistic feature from Table 20a, which was POS uni-grams. This addition increased
the performance of the bag-of-pre�xes classi�er from 0.7891 to 0.7924. Afterwards, we tried
to increase the performance by adding the sentiment feature with the highest accuracy from
Table 21a. However, this was decremental to the accuracy of the classi�er that used pre�xes
and POS uni-grams. As we did not obtain promising results with the stylistic features,
we decided to add the best bag-of-clusters featureshyp-s300-w5-700 . This procedure
neither outperformed the results of the classi�er using POS uni-grams and pre�xes. Thus,
in the end, the best classi�er was the one that used pre�xes and POS uni-grams.

The results of the classi�ers that we trained on the by-publisher subset are depicted
in Table 24. Since we obtained accuracy scores around 0.90 on the by-publisher subset
with the classi�ers using bag-of-words, we only conducted two experiments to optimize

Hyperpartisan News Detection 49/80

System Accuracy
Pre�xes (1-to-3/4) 0.7891
Pre�xes (1-to-3/4) + POS uni-grams 0.7924
Pre�xes (1-to-3/4) + POS uni-grams + negative sentiment 0.7908
Pre�xes (1-to-3/4) + POS uni-grams + hyp-s300-w5-700 0.7877
Pre�xes (3-to-4) + POS uni-grams + hyp-s300-w5-700
+ negative sentiment

0.7861

Table 23: The results of the models that use pre�xes and additional features on 5-fold
cross-validation using the by-article training data.

the performance of the classi�er. In the �rst, we tried to increase the performance of the
SVM classi�er by adding the sentiment feature with the highest accuracy from the cross-
validation experiments (see Table 21b). Similarly, we added the best linguistic feature
from Table 20b in our second experiment. The latter resulted to the highest accuracy
score on cross-validation (accuracy=0.9261). Hence, this was the best model that relied
on bag-of-words plus additional features. Therefore, we continued to evaluate this model
on the by-article (across-datasets) and by-publisher test set (in-domain).

System Accuracy
Word uni-grams 0.9185
Word uni-grams + positive + negative sentiment 0.9190
Word uni-grams + POS uni-grams 0.9261

Table 24: The results of the models that use pre�xes and additional features on 5-fold
cross-validation using the by-publisher subset.

6.3.2 Bag-of-clusters

The performance of the classi�ers on the by-article training data are shown in Table 25. The
highest accuracy score was achieved by the model that combined several types of features:
pre�xes, POS uni-grams, bag-of-clusters (using the clustershyp-s300-w5-700) and the
negative sentiment of a text. With this model, we were able to score an accuracy of 0.7954
on 5-fold cross-validation. Thus, we decided to use this classi�er for further evaluation in
the next chapters.

In the next table, we show the results of our experiments conducted on the by-publisher
subset. When we added POS bi-grams to the clusters, we increased the accuracy from
0.8556 to 0.9178. We also tried to increase the results by adding the best sentiment
features on the by-publisher subset, which were the positive and the negative sentiment.
However, this classi�er did not outperform the current best score of 0.9178. Since the
results of the stylistic features were unpromising, we decided to experiment with the best
bag-of-word features from Table 24. This increased the accuracy to 0.9194. Thus, the best

Hyperpartisan News Detection 50/80

System Accuracy
Hyp-s300-w5-700 + 0.7645
Hyp-s300-w5-700 + POS uni-grams 0.7846
Hyp-s300-w5-700 + POS uni-grams+ pre�xes +
negative sentiment

0.7954

Hyp-s300-w5-700 + character 3-to-5 grams 0.7815

Table 25: The results of the models that use additional features and bag-of-clusters on
5-fold cross-validation on the by-article training set.

model was the classi�er using bag-of-clusters (using the clusterhyp-s300-w5-800) and
bag-of-word uni-grams. Consequently, we used this classi�er for evaluation on the test sets
of the competition.

System Accuracy
Hyp-s300-w5-800 0.8556
Hyp-s300-w5-800 + POS bi-grams 0.9178
Hyp-s300-w5-800 + word uni-grams 0.9194
Hyp-s300-w5-800 + positive + negative sentiment 0.8560

Table 26: The results of the models that use additional features and bag-of-clusters on
5-fold cross-validation on the by-publisher subset.

6.3.3 Word Embeddings

The results of the experiments in which we tried to �nd the best classi�er that uses word
embeddings and additional features are presented in Tables 27 and 28. We show the results
on the by-article training data in the former, and the results on the by-publisher subset in
the latter.

We used two ways to improve the results of the classi�er usingFT-crawl and the by-
article training set. The �rst was by adding the features of the best classi�er that relied on
either one of the three document representation techniques. These features were pre�xes.
The second method was by adding the best linguistic feature from Table 20. As the latter
decreased the results, we discontinued using them in the next experiments. Instead, we
tried to increase the performance of the classi�er usingFT-crawl features and pre�xes
by adding the negative sentiment as features. Even though the negative sentiment was the
best feature from Table 21, we did not manage to increase the performance in the current
experiment. We were also unable to improve the results of the classi�er usingFT-crawl
by combining it with the best cluster features from the earlier experiments.

Because of this, the best result from Table 27 is derived from the classi�er that uses
two document representation techniques: word embeddings and bag-of-pre�xes. With

Hyperpartisan News Detection 51/80

these features, we were able to obtain an accuracy of 0.8093 on 5-fold cross-validation.
This is also the highest accuracy that we obtained in general on the by-article training set.

System Accuracy
FT-crawl 0.7754
FT-crawl + pre�xes (1-to-3/4) 0.8093
FT-crawl + POS uni-grams 0.7909
FT-crawl + pre�xes (1-to-3/4) + negative sentiment 0.8093
FT-crawl + hyp-s300-w5-700 0.7831
FT-crawl + word uni-grams + hyp-s300-w5-800 0.7985

Table 27: The scores on 5-fold cross-validation for models that use FastText pre-trained
word embeddings and additional features trained and evaluated on by-article training.

Furthermore, the results in Table 28 show that the performance of our best classi�er
using word embeddings (FT-crawl-excl-stop-words) could be improved by adding
word uni-grams. In particular, we were able to increase the accuracy from 0.8125 to 0.9206.
We initially decided to experiment with word uni-grams because it was used in the best
bag-of-words classi�er. In contrast, we subsequently experimented with pre�xes in another
experiment because they proved to be useful on the other dataset and the third best
bag-of-words features on the by-publisher subset. However, the pre�xes did not increase
the performance as much as the word uni-grams. We �nally attempted to optimize the
performance of the classi�er usingFT-crawl-excl-stop-words and word uni-grams
by adding both the positive and the negative sentiment as features. These sentiment
features achieved the best score when they were used in isolation on 5-fold cross-validation
(see Table 21). Nonetheless, this only increased the accuracy slightly. Hence, the best
classi�er of the experiments with additional features andFT-crawl-excl-stop-words
was the one that we combined with word uni-grams.

6.4 Experiments with Recurrent Neural Networks

We show the results of the experiments that we conducted with the Flair embeddings in
Table 29. It is important to recall that we used a di�erent procedure for feature selection
than the SVM classi�ers (see Section 5.5) and that there are two types of Flair embeddings:
backward and forward embeddings (see Chapter 4).

The results in the table show that we did not manage to obtain promising results with
the neural networks. In particular, we were unable to obtain high results with the set-ups
that we initially used (described in Section 5.5.1), The results of these set-ups are presented
by the results of the �rst three classi�ers in Table 29. Besides, the results reveal that the
FastText word embeddings did not yield high results when they were used with Recurrent
Neural Networks. The same can be said about the classi�er that relied on FastText word
embeddings and Flair embeddings. Furthermore, even the classi�er that used character
embeddings and Flair embeddings received only a micro accuracy of 0.5422. This result

Hyperpartisan News Detection 52/80

System Accuracy
FT-crawl-excl-stop-words 0.8125
FT-crawl-excl-stop-words + pre�xes (1-to-3/4) 0.9063
FT-crawl-excl-stop-words + word uni-grams 0.9206
FT-crawl-excl-stop-words + word uni-grams
+ positive + negative sentiment

0.9208

Table 28: The scores on 5-fold cross-validation for models that use FastText pre-trained
word embeddings (without stop words) and additional features trained and evaluated on
the by-publisher subset.

is lower than the classi�er which used FastText embeddings and the two air embeddings
(micro-accuracy=0.5802).

Because of the results of our initial set-ups, we decided to experiment with other pre-
trained word embeddings, such as the ones from GloVe. When we experimented with
GloVe, we obtained higher results than with FastText. The highest accuracy is 0.4828,
which was from the system using GloVe embeddings and the character embeddings of
Lample et al. (2016). Furthermore, the lowest accuracy score was received by the classi�er
that only used the embeddings from FastText. Recall that we obtained the best results
with these word embeddings in SVM (see Section 6.1.3).

Features Precision Recall F1-score Accuracy
Micro
Accuracy

FT-Crawl WE 0.6667 0.5000 0.5714 0.4000 0.5610
FT-Crawl WE +
Flair (backward) +
Flair (forward)

0.6842 0.5417 0.6047 0.4333 0.5802

CharacterEmbeddings
(Lample et al., 2016) +
Flair (backward) +
Flair (forward)

0.6190 0.5417 0.5578 0.4062 0.5422

GloVe 840B.300D +
CharacterEmbeddings
(Lample et al., 2016)

0.7368 0.5833 0.6511 0.4828 0.6203

GloVe 840B.300D +
Flair (backward) +
Flair (forward)

0.7000 0.5833 0.6363 0.4667 0.6000

Table 29: The performance of the classi�ers that use recurrent neural networks on evaluated
on 10% of the by-article training data and trained on 80% of the by-article training set.

Hyperpartisan News Detection 53/80

6.4.1 Best Classi�er

Despite the low results, we decided to use the second best model of Table 29 for fur-
ther evaluation. According to the micro accuracy, the second best classi�er used GloVe
embeddings and the two Flair embeddings. However, we mainly decided to continue ex-
perimenting with this classi�er because we were interested in the performance of the Flair
embeddings combined with one of the pre-trained word embeddings that we evaluated in
SVMs. Because of the low results with the FastText embeddings, we decided to use the
GloVe embeddings for this purpose.

We trained the classi�er that used GloVe embeddings plus the FastText embeddings
for four other times and selected the model with the highest micro accuracy over the �ve
runs for further evaluation. We show the best results of this procedure in Table 30. The
performance of this classi�er is similar to the best classi�er that we presented in Table
29. In addition, we visualize the performance of this classi�er over 120 epochs in Figure 6.
The graphs show that the accuracy and F1-score on the development set increased over the
amount of epochs. Nonetheless, this pattern is not visible in the most upper graph, which
indicates that the loss on the training set slowly increased over epochs. Ideally, we would
have seen the opposite pattern. Despite the unpromising results, we decided to evaluate
this classi�er on the by-article test set (in-domain evaluation) and on the by-publisher test
set (evaluation across-datasets).

Metric Score
Precision 0.7000
Recall 0.5033
F1-score 0.6365
Accuracy 0.4667
Micro accuracy 0.6363

Table 30: The performance of the best classi�er over �ve runs that use recurrent neural
networks on predicting hyperpartisan evaluated on 10% of the by-article training data and
trained on 80% of the by-article training set.

	Introduction
	Hyperpartisan News
	Research Questions
	Contributions

	Related Work
	Hyperpartisan Content Detection
	Automatic Detection
	Manual Detection

	Fake News Detection
	Feature-based Supervised Learning
	Supervised Learning with Neural Networks

	Biased Language Detection
	Summary

	Data
	The SemEval-2019 Task 4 Hyperpartisan News Dataset
	By-publisher
	By-article

	By-publisher Subset
	Fake News Dataset

	Document Representations
	Bag-of-words
	Features

	Bag-of-clusters
	Data and Methods

	Word Embeddings
	Materials
	Word2vec
	GloVe
	FastText

	Contextual Character-based Embeddings
	Flair Embeddings
	Methods

	Summary

	Experimental Set-up
	General Set-up
	Baseline and Evaluation Metrics
	Approach 1: Classification with a SVM
	Feature Selection for Document Representations
	Pre-processing and Parameter Tuning

	Additional Features for the SVMs
	Sentiment Features
	Linguistic Features
	Stylistic Features

	Approach 2: Classification with Recurrent Neural Networks
	Feature Selection

	Model Development Results
	Document Representations in SVMs
	Bag-of-words
	Bag-of-clusters
	Word Embeddings
	Overview of the Best Classifiers

	Additional Features for SVM
	Linguistic Features
	Sentiment Features
	Stylistic Features

	Adding Local Features to Document Representations with SVM
	Bag-of-words
	Bag-of-clusters
	Word Embeddings

	Experiments with Recurrent Neural Networks
	Best Classifier

	Summary

	In-domain Results
	Results with Support Vector Machines
	Results on the By-article Test Set
	Results on the By-publisher Test Set

	Results with Recurrent Neural Networks
	Best Classifier
	Summary

	Across-datasets and Out-of-domain Evaluation
	Across-datasets Evaluation on Hyperpartisan using SVM
	Training on By-article
	Training on By-publisher

	Across-datasets Evaluation on Hyperpartisan using Neural Networks
	Out-of-domain Evaluation on Fake News
	Results

	Summary

	Discussion
	Best Classifier
	Common Confusions
	Important Features

	In-domain Results
	Results Across-datasets
	Out-of-domain Results

	Conclusion
	Summary
	Closing Remarks

