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Abstract

Machine translation (MT) has benefited from
using synthetic training data originating from
translating monolingual corpora, a technique
known as backtranslation. Combining back-
translated data from different sources has led
to better results than when using such data in
isolation. In this work we analyse the impact
that data translated with rule-based, phrase-
based statistical and neural MT systems has
on new MT systems. We use a real-world
low-resource use-case (Basque-to-Spanish in
the clinical domain) as well as a high-resource
language pair (German-to-English) to test dif-
ferent scenarios with backtranslation and em-
ploy data selection to optimise the synthetic
corpora. We exploit different data selection
strategies in order to reduce the amount of data
used, while at the same time maintaining high-
quality MT systems. We further tune the data
selection method by taking into account the
quality of the MT systems used for backtrans-
lation and lexical diversity of the resulting cor-
pora. Our experiments show that incorporating
backtranslated data from different sources can
be beneficial, and that availing of data selec-
tion can yield improved performance.

1 Introduction

The use of supplementary backtranslated text has
led to improved results in several tasks such as auto-
matic post-editing (Junczys-Dowmunt and Grund-
kiewicz, 2016; Hokamp, 2017), machine transla-
tion (MT) (Sennrich et al., 2016a; Poncelas et al.,
2018b), and quality estimation (Yankovskaya et al.,
2019). Backtranslated text is a translation of a
monolingual corpus in the target language (L2) into
the source language (L1) via an already existing
MT system, so that the aligned monolingual corpus
and its translation can form an L1–L2 parallel cor-
pus. This corpus of synthetic parallel data can then
be used for training, typically alongside authentic

human-translated data. For MT, backtranslation
has become a standard approach to improving the
performance of systems when additional monolin-
gual data in the target language is available.

While Sennrich et al. (2016a) show that any
form of source-side data (even using dummy tokens
on the source side) can improve MT performance,
both the quality and quantity of the backtranslated
data play a significant role in practice. Accordingly,
the choice of systems to be used for backtranslation
is crucial. In Poncelas et al. (2019), different com-
binations of backtranslated data originating from
phrase-based statistical MT (PB-SMT) and neural
MT (NMT) were shown to have different impacts
on the quality of MT systems.

In this work we conduct a systematic study of
the effects of backtranslated data from different
sources, as well as how to optimally select subsets
of this data taking into account the loss in quality
and lexical richness when data is translated with
different MT systems. That is, we aim to (i) provide
a systematic analysis of backtranslated data from
different sources; and (ii) to exploit a reduction
in the amount of training data while maintaining
high translation quality. To achieve these objec-
tives we analyse backtranslated data from several
MT systems and investigate multiple approaches to
data selection for backtranslated data based on the
Feature Decay Algorithms (FDA: Biçici and Yuret
(2015); Poncelas et al. (2018a)) method. We exploit
different ways of ranking the data and extracting
parallel sentences; we also interleave quality evalu-
ation and lexical diversity/richness information into
the ranking process. While our empirical evalua-
tion shows different results for the tested language
pairs, this is the first work in this direction and lays
a firm foundation for future research.

Nowadays, NMT (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015),
and in particular Transformer (Vaswani et al., 2017)



achieves state-of-the-art results for many domains
and language pairs. However, NMT requires a
lot more data than other paradigms (Koehn and
Knowles, 2017), which makes it harder to adapt
to low-resource scenarios (Sennrich and Zhang,
2019). Using synthetic parallel data via backtrans-
lation has been helpful in some low-resource use-
cases (Dowling et al., 2019). For extreme cases
with no bilingual parallel corpora, unsupervised
MT can obtain reasonable results (Artetxe et al.,
2019; Lample and Conneau, 2019). However, its
application to real low-resource scenarios is still
a matter of study (Marchisio et al., 2020). In
this work we are motivated by a real-world low-
resource use-case, namely the translation of clini-
cal texts from Basque to Spanish (EU-ES). Basque
is a minority language, so most of the Electronic
Health Records (EHR) are written in Spanish so
that any doctor from the Basque public health ser-
vice can understand them. The development of a
system for translating clinical texts from Basque
to Spanish could allow Basque-speaking doctors
to write EHRs in Basque, thus contributing to the
normalisation of the language in specialised areas.

We conduct our analysis in the scope of the EU-
ES translation of EHR use-case, as well as on a
language pair and a data set that have been well
studied in the literature – German to English (DE-
EN) data used in the WMT Biomedical Translation
Shared Task (Bawden et al., 2019). As the EU-ES
medical data cannot be made publicly available due
to privacy regulations, using the DE-EN data is a
way to allow for the replicability of our work.

2 Related Work

One of the first papers comparing the performance
of different systems for backtranslation was Burlot
and Yvon (2018). The authors compared SMT and
NMT systems, obtaining similar results. Closer to
our work, Soto et al. (2019) also try RBMT, PB-
SMT and NMT systems for backtranslating EHRs
from Spanish into Basque. However, both papers
are limited to comparing the performance of sys-
tems trained with backtranslated data originating
from a single source, without examining whether a
combination might be more effective.

More recently Poncelas et al. (2019) combined
the outputs of PB-SMT and NMT systems used for
backtranslation, showing that the combination of
synthetic data originating from different sources
was useful in improving translation performance.

In this work we extend these ideas by combining
backtranslated data from RBMT, PB-SMT, NMT
(LSTM) and NMT (Transformer); in addition, we
use FDA to select sentences translated by differ-
ent systems and analyse the impact of data selec-
tion of backtranslated data on the overall trans-
lation performance. Regarding the use of data-
selection techniques in conjunction with synthetic
data, Poncelas and Way (2019) fine-tune NMT
models with sentences selected from a backtrans-
lated set, and Chinea-Rios et al. (2017) select mono-
lingual source-side sentences to generate synthetic
target strings to improve the translation model.

While the most common approach to assessing
the translation capabilities of a MT system is via
evaluation scores such as BLEU (Papineni et al.,
2002), TER (Snover et al., 2006), chrF (Popović,
2015), and METEOR (Banerjee and Lavie, 2005),
recently research has begun to address another side
of quality of translated text, namely lexical richness
and diversity. In a recent paper, Vanmassenhove
et al. (2019) study the loss of lexical diversity and
richness of the same corpora translated with PB-
SMT and NMT systems. Vanmassenhove et al.
(2019) investigate the problem for seen (during
MT training) and unseen text using MT systems
trained on the Europarl corpus (Koehn, 2005), with
original (human-produced and translated) text as
well as in a round-trip-translation setting.1 In this
work we calculate the same lexical diversity met-
rics as Vanmassenhove et al. (2019), and further use
those metrics to improve the data selection process
applied to backtranslated data.

3 Data Selection for Backtranslation
from Multiple Sources

FDA (Biçici and Yuret, 2015; Poncelas et al.,
2018a) is a data selection technique that retrieves
sentences from a corpus based on the number of
n-grams overlapping with those present in an in-
domain data set referred to as Sseed. FDA scores
each candidate sentence s according to: (i) the num-
ber of n-grams that are shared with the seed Sseed;
and (ii) the n-grams already present in a set L of

1In their experiments, Vanmassenhove et al. (2019) back-
translate the training data via an MT system trained on the
same data, then train yet another system with this data and
analyse its performance. They assess how errors propagate
through repeated translation, thereby investigating the extent
of inherent algorithm bias in MT models.



selected sentences, as defined in (1):

[t]score(s, Sseed, L) =

∑
ngr∈{s

⋂
Sseed}

0.5CL(ngr)

length(s)
(1)

where length(s) is the number of words in the sen-
tence s and CL(ngr) is the number of occurrences
of the n-gram ngr in L. The score is then used
to rank sentences, with the one with the highest
score being selected and added to L. This process
is repeated iteratively. To avoid selecting sentences
containing the same n-grams, score(s, Sseed, L)
applies a penalty to the n-grams (up to order three
in the default configuration) proportional to the oc-
currences that have been already selected. In (1),
the term 0.5CL(ngr) is used as the penalty.

In the context of MT, FDA has been shown to
obtain better results than other methods for data
selection (Silva et al., 2018). Acordingly, in this
work we too focus on FDA, although our rescoring
idea is more general and can be applied to other
selection methods based on n-gram overlap.

Related work on quality and lexical diversity and
richness of MT demonstrates that (i) regardless of
the overall performance of an MT system (as mea-
sured by both automatic and human evaluation), in
general machine-translated text is error-prone and
cannot reach human quality (Toral et al., 2018));
and (ii) machine-translated text lacks the lexical
richness and diversity of human-translated (or post-
edited) text (Vanmassenhove et al., 2019).

In its operation, FDA compares two types of
text – the seed and the candidate sentences – with-
out taking into account the quality or the lexical
diversity/richness of the candidate text. Our hy-
pothesis is that when selecting data from different
sources, FDA cannot account for the differences in
quality and lexical diversity/richness of these texts,
with the consequence that the selected set (L) is
sub-optimal.

We test our hypothesis by assessing the quality
and lexical diversity/richness of the backtranslated
data with the four different systems as well as with
different selected subsets of training data.

To tackle the problem of sub-optimal FDA-
selected datasets, we propose to rescore FDA
scores based on quality evaluation and lexical di-
versity/richness scores.2 That is, for each sentence

2We talk about “rescoring” as if we compare equations
(1) and (2), the only difference is the rescoring produced by
multiplying equation (1) (left part in equation (2)) by the

sBT
i from a backtranslated corpusDBT

i originating
from the ith MT system, we factor in the quality ex-
pressed by the evaluation metrics, q(DBT

i ) and the
lexical diversity/richness expressed by the diversity
metrics, d(DBT

i ) as shown in (2):

score(sBT
i , Sseed, L) =∑

ngr∈{s
⋂

Sseed}
0.5CL(ngr)

length(s)
· φ(q(DBT

i ), d(DBT
i ))

(2)

where φ is a function over quality and lexical diver-
sity metrics producing a non-negative real number.

We note three considerations with respect to our
approach to Equation (2).
1. Sentence-level selection versus document-

level quality and lexical diversity/richness
evaluation. The FDA algorithm works on a
sentence level, while our approach rescores the
FDA scores using document-level metrics. As
our goal is to differentiate between the out-
put of different MT systems, we consider met-
rics that reflect the overall quality of each sys-
tem. Furthermore, metrics for lexical diver-
sity/richness as type/token ratio (TTR) (Templin,
1975), Yule’s I (Yule, 1944), and the measure
of textual lexical diversity (MTLD) (McCarthy,
2005) are to be calculated on a document-level;
the same is valid for automatic evaluation met-
rics such as BLEU and TER.

2. Combined metrics. We conduct our analy-
sis using the quality metrics BLEU, TER, ME-
TEOR and chrF; and TTR, MTLD and Yule’s I
for lexical diversity/richness. For rescoring we
use only BLEU, TER and MTLD as a factor:
φ = log(BLEU ∗ (100 − TER) ∗MTLD).
We decided on this rescoring formula based on
preliminary experiments, as it led to the selec-
tion of more sentence pairs originating from
models trained with backtranslated data from
the system that performs best (for both ES-EU
and EN-DE); we chose MTLD based on the
findings of Vanmassenhove et al. (2019) which
show this metric to be more suitable for com-
parative analysis, as well as mitigating issues
related to sentence length typical for TTR and
Yule’s I (McCarthy, 2005).

3. Use of devset as a seed. Using a development
set in MT aims to test whether the performance
of the MT system has reached a certain level. In

factors dependent on MT quality and lexical diversity (right
part in equation (2)).



FDA for MT, we use a devset as the seed. In
our method we compute BLEU and TER on the
devset also used as a seed; MTLD is computed
on the backtranslated text, i.e. the synthetic
source text.

4 Language Pairs – Challenges and
Objectives

As a challenging low-resource scenario, we chose
the translation of clinical texts from Basque to
Spanish, for which there is no in-domain bilingual
corpora. We make use of available EHRs in Span-
ish coming from the hospital of Galdakao-Usansolo
to create a synthetic parallel corpus via backtransla-
tion. The Galdakao-Usansolo EHR corpus consists
of 142,154 documents compiled between 2008 and
2012. After deduplication, we end up with a total
of 2, 023, 811 sentences.3

As a basis for training the MT systems for back-
translation, we use a bilingual out-of-domain cor-
pus of 4.5M sentence pairs: 2.3M sentence pairs
from the news domain (Etchegoyhen et al., 2016),
and 2.2M from administrative texts, web-crawling
and specialised magazines.

In order to adapt the systems to the clinical do-
main, we used a bilingual dictionary previously
used for automatic clinical term generation in
Basque (Perez-de-Viñaspre, 2017), consisting of
151,111 terms in Basque corresponding to 83,360
unique terms in Spanish.

To evaluate our EU-ES systems, we use EHR
templates in Basque written with academic pur-
poses (Joanes Etxeberri Saria V. Edizioa, 2014)
together with their manual translations into Span-
ish produced by a bilingual doctor. These 42 tem-
plates correspond to diverse specializations, and
were written by doctors of the Donostia Hospital.
After deduplication, we obtain 1,648 sentence pairs
that are randomly divided into 824 sentence pairs
for validation (devset) and 824 for testing.

In order to test the generalisability of our idea,
we use a well-researched language pair, German-to-
English. As our out-of-domain corpus, we used the
DE-EN parallel data provided in the WMT 2015
(Bojar et al., 2015) news translation task.

The adaptation of systems to the medical do-
main with backtranslated data is performed using

3Due to privacy requirements, this corpus is not publicly
available. Prior to use, it was de-identified by reordering
sentences, and only authors who had previously signed a non-
disclosure commitment had access to it.

the UFAL data collection.4 We selected the follow-
ing subsets: ECDC, EMEA, EMEA new crawl,
MuchMore, PatTR Medical and Subtitles. The to-
tal amount of sentences was 2,555,138 which after
deduplication was reduced to 2,335,892. After fil-
tering misaligned and empty lines,5 the resulting
amount was 2,322,599 sentences. We used the EN
monolingual side. For development and test sets
we used the Cochrane and NHS 24 subsets from
the Himl 2017 set.6

Table 1 provides the statistics of our corpora.

Desc. Sent. Tokens
src trg

E
U

-E
S out-of-domain 4.5M 73M 102M

clinical terms 151K 271K 258K
EHRs 2M 33M
EHR templates 1.6K 18.5K 17.6K

D
E

-E
N

out-of-domain 4.5M 110M 116M
in-domain 2.3M 97M
devset 1K 16K 15K
test set 467 10K 9.7K

Table 1: Description and statistics of the used corpora.

5 Empirical Evaluation

Via a set of experiments, we (i) investigate the
differences in the backtranslated data originating
from the four different MT systems and their im-
pact on the performance of MT systems using this
backtranslated data, and (ii) test our hypothesis as
well as different approaches to rescoring the data
selection algorithm.

5.1 Systems Used for Backtranslation

First, we train PB-SMT, LSTM and Transformer
models for the ES-EU and EN-DE (i.e. reverse)
language directions. Then we backtranslate the
monolingual corpus into the target language (EU
and DE, respectively) using those systems, as well
as a RBMT one.
RBMT: We use Apertium (Forcada et al., 2011)
for the EN-DE language pair, and Matxin (Mayor,
2007) for ES-EU, adapted to the clinical domain
by the inclusion of the same dictionaries used to
train the other systems.
PB-SMT: We use Moses with default parameters,
using MGIZA for word alignment (Och and Ney,

4https://ufal.mff.cuni.cz/ufal_
medical_corpus

5We used the clean-corpus-n.pl script provided with the
Moses toolkit (Koehn et al., 2007).

6http://www.himl.eu/test-sets

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
http://www.himl.eu/test-sets


2003), an “msd-bidirectional-fe” lexicalised re-
ordering model and a KenLM (Heafield, 2011) 5-
gram target language model. We tuned the model
using Minimum Error Rate Training (Och, 2003)
with an n-best list of length 100.
LSTM: We use an RNN of 4 layers, with LSTM
units of size 512, dropout of 0.2 and a batch-size of
128. We use Adam (Kingma and Ba, 2015) as the
learning optimiser, with a learning rate of 0.0001
and 2,000 warmup steps.
Transformer: We train a Transformer model with
the hyperparameters recommended by OpenNMT,7

halving the batch-size so that it could fit in 2 GPUs,
and accordingly doubling the value for gradient
accumulation.

We train all NMT systems using Open-
NMT (Klein et al., 2017) for a maximum of
200,000 steps, and select the model that obtains
the highest BLEU score on the devset; note that the
final systems trained after applying data selection
use early stopping with perplexity not decreasing
in 3 consecutive steps as our stopping criterion.
Backtranslation is performed with the default hy-
perparameters, including a beam-width of 5 and a
batch-size of 30.

We use Moses scripts to tokenise and truecase all
the corpora to be used for statistical or neural sys-
tems. For the NMT systems, we apply BPE (Sen-
nrich et al., 2016b) on the concatenated bilingual
corpora with 90,000 merge operations for EU-ES
and 89,500 for DE-EN, using subword-nmt.8

5.2 Systems with Data Selected via
Backtranslation

For each language pair we train four Transformer
models with the authentic and backtranslated data,
as well as a fifth system with all four backtrans-
lated versions concatenated to the authentic data.
These we refer to as +Sbt, where S is one of RBMT,
PB-SMT, LSTM or Transformer and indicates the
origin of the backtranslation, and +Allbt to refer to
the system trained with all backtranslated data.

Next, we use the devset as a seed for the data
selection algorithm. Given that FDA does not score
sentences that have no n-gram overlaps with any
sentence from the seed, for the ‘EachFromAll’ con-
figuration presented later, which is constrained to

7http://opennmt.net/OpenNMT-py/FAQ.
html#how-do-i-use-the-transformer-model
(Accessed on December 9, 2019.)

8https://github.com/rsennrich/
subword-nmt (Accessed on December 9, 2019.)

select one sentence for each sentence in the mono-
lingual corpus, we randomly select one sentence
among those produced by the 4 different systems
used for backtranslation, in case none of them over-
lap with any sentence from the seed. We obtain
the FDA scores and use them to order the sentence
pairs in descending order. Next, we apply the fol-
lowing different data selection configurations:
1. Top from all sentences (referred to as FromAll

henceforth): concatenate the data backtranslated
with all the systems and select the top ranking
2M (for EU-ES) or 2.3M (for DE-EN) sentence
pairs with the possibility of selecting the same
target sentence more than once, i.e. translated
by different systems.

2. Top for each (target) sentence (henceforth, Each-
FromAll): concatenate the data backtranslated
with all the systems and select the optimal sen-
tence pairs avoiding the selection of the same
target sentence more than once. That is, each
selected target sentence will have only one as-
sociated source sentence originating from one
specific system.

3. Top for each (target) sentence x4 (henceforth,
EachFromAll x4): same as EachFromAll, but
repeating the selected backtranslated data four
times (only for EU-ES).

4. Top for each (target) sentence rescored (hence-
forth, EachFromAll RS): use MT evaluation and
lexical diversity metrics to rescore the FDA
ranks and perform an EachFromAll selection.
We selected the Transformer architecture as the

basis of our backtranslation models because (i) it
has obtained the best performance for many use-
cases and language pairs which we also aim at,
and (ii) it has been shown that Transformer’s per-
formance is strongly impacted by the quantity of
data, which can act as an indicator as to whether
our improvements originate from the quantity or
the quality of the data. That is why we compare
EachFromAll systems to systems trained with all
backtranslated data (i.e. all 8M sentence pairs), to
verify that it is not only the amount of data that
impacts performance.

6 Results and Analysis

6.1 MT Evaluation

We use the automatic evaluation metrics BLEU,
TER, METEOR and chrF (in its chrF3 variant) to
assess the translation quality of our systems. In
Table 2 we show the scores on the test set of the

http://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
http://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt


reverse systems used for backtranslation (the best
are marked in bold). For EU-ES, since we only
use clinical terms as in-domain training data, the
results are poor overall. However, we observe that
Transformer obtains the best results according to
all metrics for both EU-ES and DE-EN. Table 3
shows the results of our baseline (forward) systems.
It shows that Transformer systems perform best
for both language pairs. Evaluation scores for the
systems trained on authentic and backtranslated
data, and for the systems trained after data selection
for EU-ES and DE-EN, are shown in Table 4.

BLEU↑ TER↓ METEOR↑ CHRF3↑

E
S-

E
U

RBMT 11.37 75.52 19.80 41.35
PB-SMT 9.38 70.70 25.36 44.07
LSTM 7.01 72.29 20.46 33.94
Transformer 12.21 66.53 26.96 44.42

E
N

-D
E RBMT 8.21 72.26 25.70 41.40

PB-SMT 14.85 74.00 35.62 48.92
LSTM 24.65 54.60 43.30 53.51
Transformer 32.24 46.83 50.25 60.29

Table 2: Scores of reverse systems for backtranslation.

BLEU↑ TER↓ METEOR↑ CHRF3↑

E
U

-E
S LSTM 10.84 85.00 32.79 41.36

Transformer 19.64 69.11 43.84 53.03

D
E

-E
N LSTM 28.15 51.95 32.19 55.40

Transformer 38.27 42.87 37.02 62.37

Table 3: Scores of baseline systems.

BLEU↑ TER↓ MET.↑ CHRF3↑

E
U

-E
S

+RBMTbt 23.27 62.67 48.02 56.51
Auth. +PB-SMTbt 22.51 64.57 45.97 54.53

+ +LSTMbt 24.74 63.55 47.58 55.59
BT. +Transformerbt 25.70 60.29 48.53 57.08

+Allbt 26.18 59.10 49.19 57.31
Auth. FromAll 25.93 59.76 48.66 56.69
BT. EachFromAll 25.85 58.92 48.83 57.17
+ EachFromAll x4 24.59 61.15 48.10 56.19

DS EachFromAll RS 25.77 59.86 48.59 56.92

D
E

-E
N

+RBMTbt 39.02 42.27 37.32 62.72
Auth. +PB-SMTbt 42.32 39.21 39.37 65.91

+ +LSTMbt 40.97 39.75 38.45 64.81
BT +Transformerbt 42.75 38.73 39.35 66.05

+Allbt 42.69 38.45 39.65 65.99
Auth. FromAll 43.66 37.71 40.10 67.01
+ BT EachFromAll 43.45 38.24 39.81 66.44
+ DS EachFromAll RS 43.98 37.79 39.91 67.10

Table 4: Scores for systems trained on authentic (Auth.)
and backtranslated (BT) data, and after data selection
(DS). MET. abbreviates METEOR.

We observe from Table 4 that for both language
pairs the inclusion of backtranslated data clearly
improves the results of the baseline systems. For
EU-ES the ordering of the systems from best to

worse is Transformer > RBMT > LSTM > PB-
SMT for all metrics except BLEU, where the order
is Transformer > LSTM > RBMT > PB-SMT.
The EU-ES system trained on (authentic data and)
data translated by all systems (+Allbt), thus using
4 times more backtranslated data than the rest, ob-
tains the best results; however, the observed im-
provements are not as high as those for the other
systems, e.g. the best (+Transformerbt) has a 0.96
BLEU point improvement over the second best
(+LSTMbt), while the +Allbt system is only 0.48
BLEU points better than +Transformerbt. This ten-
dency is the same for the other metrics too. For the
DE-EN use-case the score differences between the
best systems (+Transformerbt or +PB-SMTbt de-
pending on the metric) and +Allbt are even smaller,
with BLEU and chrF3 favouring the former, and
TER and METEOR the latter.

For EU-ES, all systems trained with 2M sen-
tence pairs selected from the backtranslated data
according to the basic DS methods and the newly
proposed method with rescoring obtain better re-
sults than any system trained with backtranslated
data originating from a single system. Furthermore,
according to all metrics except BLEU, the Each-
FromAll system outperforms FromAll. Compared
to the system including the data translated by all
systems (+Allbt), EachFromAll is better only in
terms of TER. These results show that either the
quantity of data leads to differences in performance
(comparing the best system after data selection, i.e.
EachFromAll, to +Allbt), or that the data selection
method fails to retrieve those sentence pairs that
would lead to better performance. In order to test
these two assumptions, we first train a system with
the EachFromAll data repeated 4 times resulting in
the same number of sentence pairs as in the +Allbt
case. According to the resulting evaluation scores,
this system is worse than +Allbt, but also worse
than any of the basic data selection configurations.
This indicates that the diversity (among the source
sentences) gained by using 4 different systems for
backtranslation is more important than the quantity
of the data in terms of automatic scores. While for
EU-ES the EachFromAll selection configuration
achieves the best results, for DE-EN the FromAll
configuration leads to better scores. Furthermore,
this configuration outperforms the system with all
backtranslated data (+Allbt).

Next, we train a system with data selected from
the backtranslated data after the original FDA



scores have been rescored using the quality and
lexical diversity/richness scores. These systems are
shown in Table 4 with the suffix RS (i.e. ReScored).
While for EU-ES this system does not outperform
the rest, in the DE-EN case we observe that it
does. With the exception of the TER and METEOR
scores, the EachFromAll RS for the DE-EN lan-
guage pair is the best system. These experiments
show different outcomes for each language pair
and thus disagree with respect to our hypothesis
of rescoring the data selection scores being bene-
ficial for MT. Accordingly, more experiments are
needed to specify how to perform this rescoring, as
well as in which settings our rescoring proposal is
beneficial. Further analysis and a discussion on lex-
ical diversity/richness, data selection and sentence
length follow in the rest of this section.

6.2 Lexical Diversity/Richness
We analyse the lexical diversity/richness of the cor-
pora of both language pairs based on the Yule’s I,
MTLD and TTR metrics. We calculate these scores
for the corpora resulting from backtranslation by
the different systems (BT), for the corpora resulting
from applying the basic data selection approaches
(DS), and the development and test sets used for
evaluation (EV). We show these scores in Table 5
and Table 6 for EU-ES and DE-EN, respectively.

Regarding the different systems used for back-
translation, we observe that for EU-ES the sen-
tences translated by the RBMT system are much
more diverse than the rest according to all met-
rics, while Transformer obtains the highest scores
among the other three. For the DE-EN corpora, this
is not the case, and the data from the Transformer
system is more diverse according to Yule’s I and
TTR, but not according to MTLD.

We note that Yule’s I and TTR depend on the
amount of sentences in the assessed corpora. As
such, we can see that for the development and test
sets the scores are quite a bit higher than the rest.
Accordingly, comparisons should be only be con-
ducted for corpora with the same number of sen-
tences.

Following the analysis and discussion in Van-
massenhove et al. (2019), we decided to use MTLD
as the lexical diversity metric for our rescoring data
selection approach, as defined in Section 3.

6.3 Systems Selected by Data Selection
We first analyse how the basic data selection meth-
ods choose different numbers of sentences from

Type Corpus Yule’s I*100 MTLD TTR * 100
EU ES EU ES EU ES

BT

RBMTbt 74.3

0.91

15.33

14.06

3.70

1.01PB-SMTbt 0.40 13.76 1.01
LSTMbt 3.23 13.20 2.77
Trans.bt 8.19 13.79

DS
FA 2.81 0.16 13.73 13.91 2.26 0.42
EFA 5.78 0.91 13.88 14.03 3.08 1.01
EFA RS 9.54 0.91 13.84 14.03 3.67 1.01

EV Dev. 626 456 13.72 13.92 32.90 27.50
Test 663 491 13.63 13.75 32.80 27.50

Table 5: Lexical diversity scores of the backtranslation
(BT), data selection (DS) and evaluation (EV) corpora
for the ES-EU and EU-ES systems. Trans. = Trans-
former, FA = ForAll, EFA = EachFromAll, EFA RS =
EachFromAll Rescored.

Type Corpus Yule’s I*100 MTLD TTR * 100
DE EN DE EN DE EN

BT

RBMTbt 4.55

2.68

48.50

37.50

1.64

1.56PB-SMTbt 0.66 74.90 0.80
LSTMbt 2.31 40.00 1.90
Trans.bt 5.62 53.70 2.61

DS
FA 2.49 0.11 107.00 50 1.44 0.36
EFA 3.96 0.39 103.00 46.00 1.83 0.69
EFA RS 5.39 0.39 105.00 45.60 2.56 0.69

EV Dev 386 282 108.15 61.06 20.00 15.59
Test 528 301 117.90 59.63 23.83 18.11

Table 6: Lexical diversity scores of the backtranslation
(BT), data selection (DS) and evaluation (EV) corpora
for the EN-DE and DE-EN systems. Trans. = Trans-
former, FA = ForAll, EFA = EachFromAll, EFA RS =
EachFromAll Rescored.

each system used for backtranslation, and then we
compare them with the rescoring method. Figures 1
and 2 show the portion of selected sentences per
backtranslation system that form the training sets
for the systems listed in Table 4.

For EU-ES, we observe that the EachFromAll
configuration (the one with the highest scores ac-
cording to the evaluation metrics in Table 4) selects
more sentences from Transformer (649,312) in con-
trast to the ForAll approach that prefers PB-SMT
(657,543). For DE-EN, FromAll and EachFro-
mAll tend to select a higher number of sentences
backtranslated by the PB-SMT model (820,765
and 924,694, respectively). However, for both lan-
guage pairs, both ForAll and EachFromAll distri-
butions are very similar as can be seen in Figures 1
and 2. Given that the DE-EN system trained with
backtranslated data from PB-SMT (+PB-SMTbt)
obtains the worst results while the one from Trans-
former (+Transformerbt) performs the best, we cor-
relate the two measurements and hypothesise that a



Figure 1: Amount of sentences selected from each sys-
tem by the data selection approaches for EU-ES. FA
= FromAll, EFA = EachFromAll, EFA RS = EachFro-
mAll Rescored.

Figure 2: Amount of sentences selected from each sys-
tem by the data selection approaches for EN-DE. FA
= FromAll, EFA = EachFromAll, EFA RS = EachFro-
mAll Rescored.

distribution where more sentences originating from
Transformer are selected would yield better results.
Our φ rescoring (cf. Equation (2)) shifts the pre-
ferred selection system to Transformer. For EU-ES,
the EachFromAll Rescored selects 1,720,736 out
of the total of 1,985,227 sentences (about 87%);
for DE-EN, it selects 2,131,227 out of the total of
2,284,800 sentences (93%).

For a more in-depth view of the distribution of
selected sentence pairs per backtranslation system,
we present the amount of selected sentences per
system in bins of 100,000 for the FromAll systems.
We show the results for EU-ES in Figure 3 and for
DE-EN in Figure 4. For EU-ES, we observe that
Transformer is the most selected system for the first
bins, but the number of sentences sharply decreases
until the middle of the corpus and then stabilises.
In contrast, the number of sentences originating
from PB-SMT increases in the first half and slowly

Figure 3: Number of sentences selected from each sys-
tem by the FromAll data selection approach for EU-ES
language pair in subsequent bins of 100,000 sentences
(extrapolated for the last bin).

Figure 4: Number of sentences selected from each sys-
tem by the FromAll data selection approach for DE-EN
language pair in subsequent bins of 100,000 sentences
(extrapolated for the last bin).

decreases afterwards. The number of sentences
from RBMT and LSTM seams more stable, with
a slight tendency to increase, peaking in the last
bins. For DE-EN, we observe that PB-SMT is
always the preferred system, but with a decreasing
tendency; and the number of sentences originating
from LSTM increases towards the last bins.

6.4 Sentence Length

We also analyse how the average sentence length
varies during the data selection process in the Fro-
mAll configuration, as we did in Section 6.3 when
analysing the selected systems.

Table 7 shows the average sentence lengths of
the EU-ES and DE-EN data from the different re-
verse systems (BT), of the corpora resulting after
data selection (DS) and of the test and the develop-
ment sets (EV). We note that the sentences trans-
lated by PB-SMT are longer than those translated



by any other system for both language pairs. Corre-
lating these results with those presented in Table 4
and in Figures 3 and 4, we can assert that in FDA
the length penalty has a weaker effect than n-gram
overlap and as such FDA has a preference towards
n-gram MT paradigms, i.e. PB-SMT. However,
data selection that results in more Transformer sen-
tences would appear to be a better option.

Type Corpus EU ES DE EN

BT

RBMTbt 10.56 16.16 33.64 34.30
PB-SMTbt 16.09 16.16 39.04 34.30
LSTMbt 12.53 16.16 29.55 34.30
Transformerbt 12.62 16.16 23.37 34.30

DS FromAll 17.60 21.21 41.61 51.84
EachFromAll 13.67 16.16 32.94 34.30

EV Dev. 10.85 10.34 15.09 14.34
Test 11.64 11.04 21.27 20.79

Table 7: Average sentence length of the backtranslation
(BT), data selection (DS) and evaluation sets (EV).

7 Conclusions and Future Work

We evaluated several approaches to data selec-
tion over the data backtranslated by RBMT, PB-
SMT, LSTM and Transformer systems for two lan-
guage pairs (EU-ES and DE-EN) from the clin-
ical/biomedical domain. The former is a low-
resource language pair, and the latter a well re-
searched, high-resource language pair. Further-
more, in terms of the two target languages, English
is a morphologically less rich language than Span-
ish, which creates a different setting again in which
to evaluate our methodology. We use these two
different use-cases to better understand both data
selection and backtranslation.

We show how the different FDA data selection
configurations tend to select different numbers of
sentences coming from different systems, resulting
in MT systems with different performance.

Under the assumption that FDA’s performance
is hindered by the fact that the data originates from
MT systems, and as such contains errors and is of
lower lexical richness, we rescored the data selec-
tion scores for each sentence by a factor depending
on the BLEU, TER and MTLD values of the system
used to backtranslate it. By doing so, we managed
to improve the results for the DE-EN system, while
for EU-ES we obtained similar performance to the
other MT systems; this allows us to use just 25%
of the data. Further investigation is required to
study under which conditions our proposed rescor-
ing method is beneficial, but our experiments with

both low- and high-resource language pairs suggest
that if the systems used for backtranslation are poor,
then this technique will be of little value; clearly
this is closely related to the amount of resources
available for the language pair under study.

In the future, we plan to investigate ways to di-
rectly incorporate the rescoring metrics into the
data selection process itself, so that penalising sim-
ilar sentences can also be taken into account. We
also aim to conduct a human evaluation of the trans-
lated sentences in order to obtain a better under-
standing of the effects of data selection and back-
translation on the overall quality. Finally, we intend
to analyse the effect of these measures in a wider
range of language pairs and settings, in order to
propose a more general solution.
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