
A Class Library for the Integration of NLP Tools:

Definition and implementation of an Abstract Data Type Collection for the
manipulation of SGML documents in a context of stand-off linguistic annotation

X. Artola, A. Díaz de Ilarraza, N. Ezeiza, K. Gojenola, G. Hernández, A. Soroa

Faculty of Computer Science
University of the Basque Country (UPV/EHU)

649 p.k., 20080 Donostia (The Basque Country)
jiparzux@si.ehu.es

Abstract
In this paper we present a program library conceived and implemented to represent and manipulate the information exchanged in the
process of integration of NLP tools. It is currently used to integrate the tools developed for Basque processing during the last ten years
at our research group. In our opinion, the program library is general enough to be used in similar processes of integration of NLP tools
or in the design of new applications built on them. The program library constitutes a class library that provides the programmer with
the elements s/he needs when manipulating SGML documents in a context of stand-off linguistic annotation, where linguistic analyses
obtained at different phases (morphology, lemmatization, processing of multiword lexical units, surface syntax, and so on) are
represented by well-defined typed features structures. Due to the complexity of the information to be exchanged among the different
tools, feature structures (FS) are used to represent it. Feature structures provide us with a well-formalized basis for the exchange of
linguistic information among the different text analysis tools. Feature structures are coded in SGML following the TEI’s DTD for Fs,
and Feature-System Declarations (FSD) have been thoroughly specified. So, TEI-P3 conformant feature structures constitute the
representation schema for the different documents that convey the information from one linguistic tool to the next in the language
processing chain. The tools integrated so far are a lexical database, a tokenizer, a wide-coverage morphosyntactic analyzer, a general
purpose tagger/lemmatizer and a shallow syntactic parser. The type of information contained in the documents exchanged among these
tools has been analyzed and characterized using a set of Abstract Data Types.

1. Introduction
In this paper we present a program library conceived

and implemented to represent and manipulate the
information exchanged in the process of integration of
NLP tools. It is currently being used to integrate the tools
developed for Basque processing during the last ten years
at our research group. In our opinion, the program library
is general enough to be used in similar processes of
integration of NLP tools or in the design of new
applications built on them, given that feature structures
are used to represent linguistic information.

The program library constitutes a class library that
provides the programmer with the elements s/he needs
when manipulating SGML documents in a context of
stand-off linguistic annotation, where linguistic analyses
obtained at different phases (morphology, lemmatization,
processing of multiword lexical units, surface syntax, and
so on) are represented by well-defined typed feature
structures.

Due to the complexity of the information to be
exchanged among the different tools, feature structures
(FS) are used to represent it. Feature structures provide us
with a well-formalized basis for the exchange of linguistic
information among the different text analysis tools.
Feature structures are coded in SGML following the TEI’s
DTD for FSs, and Feature-System Declarations (FSD)
have been thoroughly specified. So, TEI-P3 conformant
feature structures constitute the representation schema for
the different documents that convey the information from
one linguistic tool to the next in the language processing
chain.

The tools integrated so far are:

1. EDBL, a lexical database, which at the moment
contains more than 80,000 entries (Aldezabal et al.,
2001).

2. A tokenizer that identifies tokens from the input text.
3. Morpheus, a wide-coverage morphosyntactic

analyzer for Basque (Alegria et al., 1996). It attaches
to each input word form all its possible
interpretations. The result is a set of possible
morphosyntactic readings of a word in which each
morpheme is associated with its corresponding
features in the lexicon: category, subcategory,
declension case, number, and definiteness, as well as
its syntactic functions (Karlsson et al., 1995) and
some semantic features. It is composed of several
modules such as:
• A segmentizer, which splits up a word into its

constituent morphemes.
• A morphosyntactic analyzer (Aduriz et al.,

2000), whose goal is to group the morphological
information associated with each morpheme
obtaining the morphological information of the
word form considered as a unit. This is an
important step in our analysis process due to the
agglutinative character of Basque.

• A recognizer of multiword lexical units
(MWLUs), which performs the morphosyntactic
analysis of multiword units present in the text
(Aduriz et al., 1996).

4. EusLem, a general-purpose tagger/lemmatizer.
(Ezeiza et al., 1998).

5. A shallow syntactic analyzer (Aduriz et al., 1998b)
that identifies noun phrases and verbal chains.

The figure 1 shows the linguistic tools integrated and
the information flow among them.

An overview of the I/O stream format between
programs is presented in the next section. Section 3
explains by means of an example the use of feature
structures to interchange complex linguistic information
and gives some details of our representation. Section 4
describes the library of programs as a repository of
Abstract Data Types on Feature Structures and other
entities related to the SGML documents to be
manipulated. The final section presents some conclusions.

2. An I/O stream format between programs
The figure shows the integration of the lexical

database, the tokenizer, Morpheus including the
modules that perform the morphological segmentation,
morphosyntactic treatment, treatment of MWLUs and
morphosyntactic treatment of MWLUs, EusLem, and
the shallow syntactic analyzer emphasizing that the
communication among the different processes is made by
means of SGML documents (.sgm files). As in Figure 1,
here also thick line-border rectangles are used to represent
processes.

Having an SGML-tagged input text file (.sgm), the
tokenizer takes this file and creates, as output, a .w.sgm
file, which contains the list of the tokens recognized in the
input text. The tokenized text (.w.sgm) is of great
importance in the rest of the analysis process, in the sense
that it intervenes as input for different processes.

After the tokenization process, the segmentizer takes
as input the tokenized text and the general lexicon issued
from the lexical database, and will produce two
documents: a .seg.sgm file, which contains the different
segmentation analyses (FSs describing the different
morphemic segments found in each word token), and a
.seglnk.sgm file containing the links between the tokens in
the .w.sgm file and their corresponding analyses (one or
more) in the .seg.sgm file.

After that, the morphosyntactic treatment module
included in Morpheus takes as input the output of the
segmentation process to produce its result: the collection
of morphosyntactic analyses (FSs) corresponding to the
input text (.morf.sgm). The morphosyntactic treatment
module processes the .seglnk.sgm file issued in the
previous phase producing a .morflnk.sgm file that contains
now the links between the tokens in the .w.sgm file and
their corresponding analyses (one or more) in the
.morf.sgm file. This file will be later enriched by the
MWLUs’ treatment module. This module, included also
in Morpheus, performs the processing of multiword
lexical units, and produces a .mwlnk.sgm document which
describes, by means of a collection of <link> elements,
the structure of the MWLUs identified in the text. This
module has obviously access to: (a) the .morf.sgm file, in
order to be able to remove some single-word analysis FSs
in the cases that MWLUs are unambiguously recognized,
and (b) the .morflnk.sgm file, into which it will add the
links between the .mwlnk.sgm file and the .morf.sgm file1.

1 The links between the .mwlnk.sgm file and the .morf.sgm file
represent the MWLU analyses found in the text. In this case,
they do not link tokens with their analyses, but a MWLU’s

The treatment of MWLUs is finally completed by the
MWLUs’ morphosyntactic treatment module.

Tokenization

Morphological
Segmentation

Morphosyntactic
Treatment

Treatment of
MWLUs

Morphosyntactic
Treatment of

MWLUs

EusLem
(lemmatizer)

Text
(.sgm)

Segmentations
(.seg.sgm)

Morphosyntactic
Analyses

(.morf.sgm)

Lemmatizations
(.lem.sgm)

MWLUs'
Structure

(.mwlnk.sgm)

Tokenized
Text (.w.sgm)

General
Lexicon

(.edbl.sgm)

MWLUs'
Lexicon

(.mwedbl.sgm)

Links: .w.sgm - .seg.sgm
(.seglnk.sgm)

Links: .w.sgm - .morf.sgm
.mwlnk.sgm - .morf.sgm

(.morflnk.sgm)

Links: .w.sgm - . lem.sgm
.mwlnk.sgm - .lem.sgm

(.lemlnk.sgm)

Figure 1. Detailed information flow between the analysis
tools.

The file containing the morphosyntactic analysis FSs,
the .mwlnk.sgm file, the .morflnk.sgm file, and the output
of the tokenizer constitute the input of the lemmatizer.

The lemmatizer produces two more files: .lem.sgm that
contains the lemmatization FSs corresponding to the input
text, and .lemlnk.sgm that stores the links between the
tokens and their corresponding lemmatization analyses,
plus, in the case of MWLUs, the links between the
MWLU’s formation denoting links (.mwlnk.sgm) and their
corresponding lemmatization analyses2. It is also capable
of updating the .mwlnk.sgm file if, due to the
disambiguation performed, it has to remove some of the
links previously included in it.

3. Using feature structures to interchange
complex linguistic information

structure denoting links (in the .mwlnk.sgm file) with its
corresponding analyses in the .morf.sgm file.
2 In fact, the lemmatizer also gives some information about the
syntactic functions corresponding to the word and multiword
tokens recognized in the text. This information comes in part
from the lexicon, and it is enriched in the lemmatization process
by applying Constraint Grammar mapping rules. It is represented
by means of two documents, a library of the different syntactic
functions (.sf.sgm) and the corresponding link file (.sflnk.sgm)
that attach, in this case, the token, the lemmatization identifier,
and the syntactic function identifier. The purpose of this
information is obviously to be used in the syntactic analysis of
the sentence that is outside the scope of this paper; because of
that, these documents are not represented in the figure.

We decided to use feature structures to represent the
information to be interchanged among the linguistic tools.
The use of feature structures quickly spread to other
domains within linguistics since Jakobson (1949) first
used them for the representation of phonemes. The ability
of feature structures to serve as a general-purpose
linguistic metalanguage led us to use them as the basis of
our encoding.

The feature structures in the integrated system are
coded following the TEI’s DTD for FSs, and they fulfill
the Feature-System Declarations (FSD) that have been
thoroughly described for all the inputs/outputs in the tool
pipeline.

The example (Figure 2) represents a partial view of the
output of the segmentizer for the derivative word form
softwaregileek (Basque term for software makers in the
ergative case). The word form softwaregileek can be split
up in two different ways:
a) softwaregile + ek
b) software + gile + ek
The first one reflects the case in which softwaregile is
analyzed as a lexicalized term (the information about the
constituents of the word then comes from EDBL). As can
be seen in the figure, in this case the two constituents of
the word are represented by two <fs> elements: <fs
type="lemma"> and <fs type="morpheme">3. In the
second case (not in the figure), the number of constituents
is three: two parts of the lemma (the root and the lexical
suffix) and one declension morpheme.

A linguistic analysis may consist of many different
types of <fs> elements, each of which may group
together different types of <f> elements. In order to
distinguish among the different types of <fs> elements, a
type attribute that specifies the FS type is provided (for
instance, see the "lemma" and "morpheme" FS types in
Figure 3).

As a last example (Figure 3), we show a partial view
of the output of the lemmatizer for the same word form
(softwaregileek), in which the resultant FS shows a much
simpler structure, and where one of the interpretations has
been removed by the morphological disambiguation
process (part of EusLem).

3.1. Our representation
A key issue in software development in NLP tasks is

the definition of a framework for linguistic knowledge
representation. Such a framework has to satisfy needs
entailed by the different tools and has to be general
enough (Basili et al., 1998). It is not trivial to adopt a
formalism to represent this information. Different
approaches have been considered for this task. Some of
them as ALEP (Simkins, 1994), Advanced Language
Engineering Platform, can be considered the first
integrating environment for NLP design. All the
components (linguistic information, processing modules
and resources) are homogeneously described using ALEP
User Language (AUL) based on a DAG formalism.

3 An <fs> element represents a feature structure. It is composed
by a set of features and their values, represented by <f>
elements. The element <Lemma> is used to distinguish the
lemma-constituent morphemes from the inflection morphemes,
which are described by means of <Morpheme> elements.

Others, like GATE (Cunningham, et al., 97) and Calypso
(Zajac, 1998) represent textual information by using the
notion of textual annotation firstly introduced in the
TIPSTER project (Grisham., 1997). In other solutions, the
linguistic information is added in the form of markup,
SGML/XML, like in LT-NSL (Thompson et al. 1996)
and Sissa (Lavelli et al. 2001). XML is acquiring more
and more relevance in this area, as the solutions using it
are becoming very popular, e.g. XCES (Ide et al. 2000),
an XML-based encoding standard for linguistic corpora;
LT-XML, the XML version of LT-NSL; ATLAS (Bird et
al. 2000), an architecture for linguistic annotation. In our
case the representation is modeled as a collection of
abstract data types that have been implemented as classes
in C++, using LT-NSL functions. As a result, we have
built a library of programs designed in the process of the
integration of linguistic tools, developed following the
TEI P3 guidelines. These Abstract Data Types constitute a
library of programs that follow the TEI P3 guidelines and
are used to integrate the different linguistic tools
mentioned earlier.

Within a framework of stand-off linguistic annotation,

the output of each of the analysis tools may be seen as
composed of several documents that, in our most complex
case, constitute a five-document set. Looking at the
characteristics of the information to be manipulated,
different groups of documents have been identified. We
define abstract data types to represent each information
type. The abstract data types specify the possible values
and their operations (their behavior). Next we will show
the information types identified:

1. Text elements found in the input: the list of

lexical instances or single-word tokens issued
from the tokenizer. They are represented by the
SGML <w> element (with its correspondent W
class). W-class objects are groups together in a
WL class.

2. Description of the structure of multiword lexical
units: the collection of “multiword tokens”
identified in the input. The MWStruct class
represents the constituents of a multiword units.
MWStructL represents the list of MWStruct
objects.

3. Analysis collection: A library of the analyses
(FSs) corresponding to the tokens in the given
input text through the different analysis phases.
Several classes have been defined here: FS
(feature structure class), FL (list of features of a
feature structure), F (feature class), FVL (the list
of values of a feature), FValue (the value of a
feature), and so on. A list of <fs> elements is
represented by the class FSL. Figure 5 w shows
the set of classes (abstract data-types) defined in
this group. This information is found in the
following files: .seg.sgm, .morf.sgm and
.lem.sgm.

4. Links from the text elements to their
corresponding analysis or analyses. The list of all
links will be a list of <link> elements, identified
in our system by the LinkL class. The files

<tei.2>
...
<p>
<fs type="Segmentation"> <!-- first segmentation: softwaregile + ek -->
<f name="Form"><str>softwaregileek</str></f>
<f name="Lemma-Morphemes" org="list">
<fs type="Lemma">
<f name="TWOL"><str>softwaregile</str></f>
<f name="Unit">
<fs type="Key">
<f name="Entry"><str>softwaregile</str></f>
<f name="Homograph-Id"><nbr value="0"></f>

</fs>
</f>
<f name="Features">
<fs type="Feature-List">
<f name="POS"><sym value="NOUN"></f>
...
<f name="ROOT">
<fs type="Key">
<f name="Entry"><str>software</str></f>
<f name="Homograph-Id"><nbr value="0"></f>

</fs>
</f>
<f name="SUFL" org="list">
<fs type="Key">
<f name="Entry"><str>gile</str></f>
<f name="Homograph-Id"><nbr value="1"></f>

</fs>
...
<fs type="Morpheme">
<f name="TWOL"><str>ek</str></f>
<f name="Unit">
<fs type="Key">
<f name="Entry"><str>ek</str></f>
<f name="Homograph-Id"><nbr value="1"></f>

</fs>
</f>
<f name="Features">
<fs type="Feature-List">
<f name="POS"><sym value="DEC"></f>
<f name="CASE"><sym value="ERG"></f>

...
</fs> <!------------------ end of first segmentation ------------------>

</p>
<p>
<fs type="Segmentation"> <!-- second segmentation: software + gile + ek -->
...
</fs> <!---------------- end of second segmentation --------------------->

</p>
...
</tei.2>

Figure 2. Multiple segmentations for softwaregileek.

.seglnk.sgm, .morflnk.sgm, .lemlnk.sgm contain
the different links created as a result of the
output of some of the tools described earlier.

5. Documents: collections of text elements
single and multiword, analyses, and links.
We differentiate four different document types
at the moment : A document containing a list
of text elements (WSGMDoc), a document

containing a list of analysis (ASGMDoc), a
document containing a list of links
(LnkSGMDoc)and a document containing a list
of multiword unit (MWSGMDoc).
All of them contain, apart of their specific
information, data about the characteristics of
the document such as date of creation, author,
sources, relation with other documents etc.

<!-- output of EusLem (.lem.sgm): softwaregileek -->
<tei.2>
...

<p>
<fs id="IZE-ARR-1905" type="Lemmatization">

<f name="Form"><str>softwaregileek</str></f>
<f name="Lemma"><str>softwaregile</str></f>
<f name="Morphological-Features">

<fs type="TopLevel-Feature-List">
<f name="POS"><sym value="NOUN"></f>
<f name="SUBCAT"><sym value="COMMON"></f>
<f name="ANIM"><plus></f>
<f name="ROOT"><str>software</str></f>
<f name="SUFL" org="list">

<str>gile</str>
</f>
<f name="CASE"><sym value="ERG"></f>
<f name="NUM"><sym value="P"></f>
<f name="DET"><sym value=“DET”></f>
<f name="SYNTFL" org="list">

<sym value="@SUBJ">
...
</fs>

</p>
...
</tei.2>

Figure 3. Disambiguated output of the lemmatizer.

Figure 4. Set of classes (abstract data-types) defined in the analysis collection.

4. A repository of Abstract Data Types on
Feature Structures

In this section we present the library designed in
order to facilitate the work with the FSs and related
classes describing the linguistic information in our
integrated system. The different elements used in it
have been characterized as Abstract Data Types (ADT).
As is well known, the theory underlying ADTs gives
the user a way to describe which kind of values belong
to a particular type, and to determine precisely the set of
operations that can be performed on them.

As a result of the analysis of the characteristics and
structure of the different data used as input and output
of the analysis tools, we have identified the different
ADTs intervening, and we have consequently
implemented several library modules to encapsulate
them. The set of packages implemented provides
internal representation and operations for the following
types among others: FS, FSD, Link, MWLink, Feature,
Value, FSId, FSList, FList, LList, and so on.

 These packages offer the necessary operations the
different tools need to perform their task when
recognizing the input and producing their output.

These functions allow:
a) getting the necessary information from an SGML

document containing tokens, links, multiword
structure links or FSs;

b) producing with ease the corresponding output
according to a well-defined SGML description.

In Figure 5 we show a partial view on the
specifications of the FS (feature structure) ADT. Values
of this type are represented by triples (Id, Type and
Features). Each component of the triple is an attribute
whose value belongs to another ADT. So, the Id
component belongs to the FSId ADT, the Type
component to the FSType ADT, and, finally, the
Features component to the FList (features list) ADT.
Each one of these ADTs has been specified elsewhere
in the same way.

As can be seen in the figure, the operations defined
in the FS ADT are the following:
• FEATURE_STRUCTURE (type’s constructor): builds

up an FS object given the type and, optionally, an
identification and a feature list.

• ADD_F: adds a new feature to the feature structure.
• ID, TYPE and FEATURES: operations that give access

to the feature structure attributes.
• EQUAL, COPY and so on: perform different actions on

the feature structure. The first one examines two
FSs saying whether they represent the same object;
COPY will reproduce an FS object to another FS.

The ADTs’ library has been implemented in C++,
following an object-oriented methodology. For the
implementation of the different operations we make use
of the LT NSL system (McKelvie et al., 1997), a tool
architecture for SGML-based processing of text
corpora. The current release of the library works on
Unix (Solaris 2.5).

Figure 5. Formal specification of the FS Abstract Data Type.

FS Abstract Data
T

1
FS:: Id: FSId
Type:
Features:

Operations
FEATURE_STRUCTURE ([Id: FSId]; Type: FSType; [Feature_List:
FStruct: FS
 pre
 post Id (FStruct) = Id & Type (FStruct) =

(Features = [] or Features (FStruct) =
ADD_F (FStruct1: FS; F1: F) FStruct2:
 pre
 post Features (FStruct2) = Features • F1
ID (FStruct: FS) Id:
 pre
 post Id = Id
TYPE (FStruct: FS) Type:
 pre
 post Type = Type truct)
FEATURES (FStruct: FS) Feature_List:
 pre
 post Feature_List = Features
ID_MODIFY (FStruct1: FS; Id: FSId) FStruct2:
 pre
 post Id = Id
FEATURE_VALUE (FStruct: FS; N: FName) V:
 pre
 post (exists I in indseatures (FStruct) | Name (Features

()(I)) = N &
(V = Value (Features (FStruct) (I))) or V =

COPY (FStruct1: FS) FStruct2:
 pre
 post FStruct2 =
EQUAL (FStruct1: FS; FStruct2: FS) B:
 p re
 post B = (FStruct2 = Struct1)

5. Conclusion and future work
A central issue in the software development in NLP

is the definition of a framework for linguistic
knowledge representation. Such representation has to
satisfy different needs and has to be general enough.
Different approaches have been considered for this task.
In our case, we make usage of TEI conformant feature
structures (FS) coded in SGML to represent any kind of
linguistic information related to a text.

SGML as an I/O stream format provides a formal
framework for the internal processing. Besides of
forcing us to define formally the input and the output of
the tools used for the linguistic analysis of texts, it
facilitates the future integration of new tools into the
analysis chain and the construction of applications
based on these tools.

We defined each entity as an abstract data-type
characterized by joining data and their corresponding
behavioral aspects. Each abstract data-type has been
implemented as a class in C++ and using LT/NSL
functions. As a result, we have built a library of
programs designed in the process of the integration of
linguistic tools, developed following the TEI P3
guidelines.

The library has shown its capability to map different
formalisms of linguistic representation and output from
different tools (a lexical database describing language
morphology using the two-level morphology formalism,
a lemmatizer, etc.). This lead us to think that other
processes and formalisms could be easily integrated, for
example, the syntax level, where we are already
working on.

The current release of the library works on Unix
(Solaris 2.5). In a near future, and considering that
XML is beginning to be widely used for linguistic
tagging tasks, we are planning to update our framework
to XML in an integrated and distributed environment
for linguistic applications using CORBA technology.

6. Acknowledgements
This work is being carried out in the project G19/99,

supported by the University of the Basque Country and
by the Spanish Ministry.

7. References
Aduriz I., Aldezabal J.M., Artola X., Ezeiza N.,Urizar

R., 1996. Multiword Lexical Units in EUSLEM: a
lemmatiser-tagger for Basque. In Proc. in
Computational Lexicography (Complex'96), 1-8.
Linguistics Institute, Hungarian Academy of
Sciences. Budapest (Hungary).

Aduriz I., Agirre E., Aldezabal I., Alegria I., Ansa O.,
Arregi X., Arriola J.M., Artola X., Díaz de Ilarraza
A., Ezeiza N., Gojenola K., Maritxalar A., Maritxalar
M., Oronoz M., Sarasola K., Soroa A., Urizar R.,
Urkia M., 1998. A Framework for the Automatic
Processing of Basque. In Proc. of the First Int. Conf.
on Language Resources and Evaluation. Granada
(Spain).

Aduriz I., Aldezabal I., Ansa O., Artola X., Díaz de
Ilarraza A., Insausti J. M., 1998. EDBL: a Multi-
Purposed Lexical Support for the Treatment of
Basque. In Proc. of the First Int. Conf. on Language
Resources and Evaluation, vol II, 821-826. Granada
(Spain).

Aduriz I., Agirre E., Aldezabal I., Arregi X., Arriola
J.M., Artola X., Gojenola K., Maritxalar A., Sarasola
K., Urkia M., 2000. A Word-Level Morphosyntactic
Grammar For Basque. In Proc. of the Second Int.
Conf. on Language Resources and Evaluation.
Athens (Greece).

Aldezabal I., Ansa O., Arrieta B., Artola X., Ezeiza A.,
Hernandez G., Lersundi M., 2001. EDBL: a General
Lexical Basis for the Automatic Processing of
Basque. In Proc. of IRCS Workshop on linguistic
databases. Philadelphia (USA).

Alegria I., Artola X., Sarasola K., Urkia M., 1996.
Automatic morphological analysis of Basque.
Literary & Linguistic Computing, 11, no. 4, 193-203.

Basili, R., Di Nanni, M., Pazienza, M.T., 1998.
Engineering of IE Systems: An Object-oriented
approach. Information Extraction: Towards scalable,
Adaptable Systems. M.T. Pazienza (Ed.). Springer
Verlag LNAI 1714.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun,
C. Liberman, M., 2000. ATLAS: A Flexible and
Extensible Architecture for Linguistic Annotation. In
Proceedings of the Second International Language
Resources and Evaluation Conference. Paris
(France).

Cunningham H., Wilks Y., Gaizauskas R., 1997.
GATE -- a TIPSTER-based General Architecture for
Text Engineering. In Proceedings of the TIPSTER
Text Program (Phase III) 6 Month Workshop,
DARPA. Morgan Kaufmann. California

Ezeiza N., Aduriz I., Alegria I., Arriola J.M., Urizar R.,
1998. Combining Stochastic and Rule-Based
Methods for Disambiguation in Agglutinative
Languages. In Proc. COLING-ACL'98, 10-14.
Montreal (Canada).

Goldfarb, C.F. The SGML Handbook. Prentice Hall
Iberia. SRL, Madrid 1999.
Grishman, R., 1997. TIPSTER Architecture Design

Document Version 2.3. Technical report, DARPA.
http://www.itl.nist.gov/div894/894.02/related_project
s/tipster/.

Ide, N., Bonhomme, P., Romary, L., 2000. XCES: An
XML-based Encoding Standard for Linguistic
Corpora. In Proceedings of the Second International
Language Resources and Evaluation Conference.
Paris (France).

Ide N., Véronis J. (eds.), 1995. Text Encoding Initiative.
Background and Context. Kluwer Academic Pub.

Jacobson R., 1949. The Identification of Phonemic
Entities. Travaux du Cercle Linguistique de
Copenhague, 5, 205-213.

Karlsson F., Voutilainen A., Heikkilä J., Anttila A.,
1995. Constraint Grammar: A Language-
independent System for Parsing Unrestricted Text.
Mouton de Gruyter.

Lavelli A., Pianesi F., Maci E., Prodanof I., Dini L.,
Mazzini G., 2001. SiSSA - A Software Infrastructure
for Developing Distributed NLP Applications. In
Proceedings of the Workshop on Modular

http://www.itl.nist.gov/div894/894.02/related_projects/tipster/
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/

Programming applied to Natural Language
Processing held as part of EUROLAN'01 Summer
School. Iasi (Romania).

Mckelvie, D., Brew, C., Thompson, H., 1997. Using
SGML as a basis for Data-Intensive NLP. In Proc.
ANLP'97. Washington (USA).

Sperberg-McQueen C.M., Burnard L., 1994. Guidelines
for Electronic Text Encoding and Interchange. TEI
P3 Text Encoding Initiative.

Simkins N.K., 1994. An Open Architecture for
Language Engineering. In First Language
Engineering Convention. Paris (France)

Thompson H., McKelvie D., Finch S., 1996. The
Normalised SGML Library LT NSL version 1.4.6.
Technical Report, Language Technology Group,
University of Edinburgh.
http://www.ltg.ed.ac.uk/software/lt nsl.html

Zajac, R., 1998. Reuse and Integration of NLP
Components in the Calypso Architecture. In
Workshop on Distributing and Accessing Linguistic
Resources . Granada, (Spain).

