Can NLP help less resourced languages to promote their use?

Kepa Sarasola
Ixa Taldea.
University of the Basque Country
http://ixa.si.ehu.es

Joint Culture & Technology and CLARIN-D Summer School
"Digital Humanities & Language Resources"
22nd of July to 1st of August 2014
Can NLP help less resourced languages to promote their use?

- Today language technology (LT) provides many powerful resources to make easier the use of human languages
- But all the languages are not able to use this technology
- Taking into account the different levels in using LT, we propose a classification for the 7000 languages in our world
- What language resources could be useful to promote the use of less resourced languages?
- Results achieved by IXA Group in using LT to normalize and to promote the use of Basque
Outline

- How are languages facing the ICT and HLT challenges?
- Which languages are "less resourced"? Six different levels
- Can NLP help less resourced languages to promote their use?
- Related work
- Conclusions
How are languages facing the ICT and HLT challenges?

- Figures about amounts of resources on the Internet for different languages are not easy to obtain.

- We should use more specific public rankings:
 - Internet users,
 - Internet documents,
 - Wikipedia's articles.
How are languages facing ICT?

Number of users

- **Internet World Stats 2010**
 - English: 636 million users (30%)
 - Top ten languages: 1.600 million users (82.2%)
 - Rest of the languages: 360 million users (17.8% of users, 36% of world population)

Estimated internet users are 1,965,514,816 on June 30, 2010
Copyright © 2000 - 2010, Miniwatts Marketing Group
How are languages facing ICT?

World Internet Penetration Rates by Geographic Regions - 2012 Q2

- North America: 78.6%
- Oceania / Australia: 67.6%
- Europe: 63.2%
- Latin America / Caribbean: 42.9%
- Middle East: 40.2%
- World, Avg.: 34.3%
- Asia: 27.5%
- Africa: 15.6%

Source: Internet World Stats - www.internetworldstats.com/stats.htm
Penetration Rates are based on a world population of 7,017,846,922 and 2,405,518,376 estimated Internet users on June 30, 2012.
Copyright © 2012, Miniwatts Marketing Group
How are languages facing ICT?

Number of Internet documents

- Reliable statistics for different languages are scarce
 - 45% of the webpages were written in English,
 - 5.9% in German, 3.80% in Spanish, 4.41% in French, 2.66% in Italian, 1.39% in Portuguese, 0.28% in Romanian, and 0.14% in Catalan.
- Alternative way:
 - "Web as a Corpus" (Kilgarriff & Grefenstette, 2003)
 - Obtain figures for a language using APIs of search engines (if recognized by the engine)
How are languages facing ICT?

Number of articles in Wikipedia
http://meta.wikimedia.org/wiki/List_of_Wikipedias

- Articles in 287 languages (July 2014).
- Top 10 languages:
 - English (4.6 million articles),
 - German (1.7 M), French (1.5 M),
 - Dutch, Italian, Polish, Spanish, Russian, Japanese, and Portuguese.
 - Chinese, Arabic and Korean are not in this second top list, instead of them Polish, Italian and Dutch are included.
- Surprisingly:
 - 17th: Catalan (431 K)
 - 33th: Esperanto (199 K)
 - 36th: Basque (189 K)
How are languages facing HLT?

Several public repositories:
- ELRA, LDC, ACLWiki, NLSR

Presence/absence in the most popular linguistic services
- word processing
- search engines
- machine-translation engines
How are languages facing HLT?

Several public repositories:
- ELRA
- LDC
- ACLWiki
- NLSR

These information sources are not always complete
- Repositories refer to the products they offer
 - They manage resources and sell some of them
- Wiki-like sites only to those entered by volunteers
 - just for consulting
How are languages facing HLT?

ELRA European Language Resources Association.

- > 1000 resources **for 60 languages**
- Resources distributed by ELRA agency
 (some products are free for research)
- 6 products for Basque.
- *The Universal Catalogue*
 - Collaborative enriching and comprising information
 - Recently added by ELRA
 - + other products not distributed by ELRA.
 - 519 for English, 462 for German,
 16 for catalan, 6 for Basque
How are languages facing HLT?

LDC. Linguistic Data Consortium

- > 500 resources for 82 languages
- Search by language is allowed.
- 370 products for English, no products for Basque,
How are languages facing HLT?

ACLwiki. Association for Computational Linguistics

- Resources for 73 languages
- Search by language is allowed.
- 16 products for Basque
How are languages facing HLT?

NLSR. Natural Language Software Registry (DFKI)

- Resources **for 30 languages**
- Search by language is allowed.
- 3 products for Basque
- 59 products for “any language”
How are languages facing HLT?

- On-line lexical resources for 300 languages
- Search by language is allowed.
- 5 links to Basque resources (although they are more than 40)
How are languages facing HLT?

Presence/absence in the most popular linguistic services

- **Word processing**
 - **MSWord**
 - 91 languages
 - (54 languages free download local languages)
 - Basque, Catalan, Quechua
 - **Libreoffice**
 - 104 languages
 - Basque, Catalan, Quechua??
How are languages facing HLT?

Presence/absence in the most popular linguistic services

- Search engines
 - Google:
 - Interfaces in 152 languages
 - Identifies 50 languages
- MT systems
 - Babelfish: 13 languages
 - Google-Translate: 80 languages
Outline

- How are languages facing the ICT and HLT challenges?
- **Which languages are "less resourced"?**
 Six different levels
- Can NLP help less resourced languages to promote their use?
- Related work
- Conclusions
How are languages facing HLT?

Which languages are "less resourced"?

- The answer is relative
- Six different levels
Which languages are "less resourced"?
Six different levels

1. First level: English.
 (Good level of support (Mariani, 2013) regarding to the number of LRs in LRE Map)
 - 37.9% of the users of Internet.
 - 45.00% of the web pages.
 - 62% of the HLT resources in LDC
 - 51% in ELRA.
 - Almost all the types of HLT applications.
Which languages are "less resourced"? Six different levels

- Second level: top 10 languages in the web
 - 82.2% of the Internet users (55.4% excluding English)
 - Active LR development continues
 - Most major categories of HLT are represented
 - Most of the HLT kind of resources described in LDC or ELRA are available for those languages
 - 45.79% for German,
 - 41.27% for French,
 - 40.76% for Spanish;
 - 36.24% for Italian,
 - 31.31% for Portuguese
 - Streiter et al. (2006) use the term "central languages" to refer to this set of languages.
 - Relatively good level of support (Mariani, 2013)
Which languages are "less resourced"?
Six different levels

Third level: around 70 languages. Moderate and fragmentary support (Mariani, 2013)

Languages with any HLT resource registered
- 60 languages in ELRA,
- 82 in LDC,
- 73 in ACLWiki
- 30 in NLSR.

Google dentificates 50 languages
Google-Translate: 80 languages
Which languages are "less resourced"?
Six different levels

Fourth level: Around 300 languages
Weak support in (Mariani, 2013)

Languages with any lexical resource on-line registered

- 307 languages in yourdictionary.com
- It is almost the same set of languages that are present in Wikipedia (287 languages).
Which languages are "less resourced"?
Six different levels

- **Fifth level:**
 Languages that have writing systems
 (Borin, 2009)
 - Other 2,014 languages are included here

- **Sixth level:**
 the big bag including only-spoken languages in the world
 - At least other 4,500 languages

Both 5th and 6th correspond to Languages with No Application support (Mariani, 2013)
How are languages facing HLT?

Which languages are "less resourced"?

- The answer is relative
- Six different levels
Which languages are "less resourced"?
Six different levels

This 6 level typology gives a relative definition of less-resourced languages

- Comparing with English all the other languages could be considered less-resourced.
- Or ... except the 10 top languages the rest can be considered less-resourced.
- The languages of the third level are lesser resourced than the languages of the second level, by definition.
- 3^{rd} or the 4^{th} are the levels of languages usually called as less-resourced in the HLT domain.
- We may consider that languages in the 5^{th} and the 6^{th} levels are really endangered,
How are languages facing the ICT and HLT challenges?

Which languages are "less resourced"?
Six different levels

Can NLP help less resourced languages to promote their use?

Related work

Conclusions
Outline

- How are languages facing the ICT and HLT challenges?
- Which languages are "less resourced"? Six different levels
- Can NLP help less resourced languages to promote their use?
- Related work
- Conclusions
Can NLP help?

Helping the language to climb to the next level?

- **Basque** from 4\(^{th}\) level to 5\(^{th}\) level? (1988-2009)
- **Quechua**? (2012 - ...)

Diagram:
- English: Best position in all HLT applications and resources
- Central languages (top 10 languages): Relevant position in all HLT applications
- Languages with any HLT application
- Languages with any lexical resource in Internet
- All the world languages: 7,000 languages
History of Basque

Preromantic languages in Spain

Basque in 7th, 12th and 19th centuries
Basque nowadays

6 different dialects!

1,033,900 Speakers
(First lang.: 700,000)

Non homogeneous distribution!
Main reasons of Basque regression for centuries

- No official language
- Out of the education system
- 6 dialects!
- Out of media
- Out of industry
Main reasons of Basque regression for centuries

- No official language ➔ Coofficial language
- Out of the education system ➔ Integrated in education (even at university)
- 6 dialects! ➔ Unified Basque (1966)
- Out of media ➔ TV, newspaper...
- Out of industry ➔ Out of new ICTs ???

But since 1980...
Basque. Linguistic features: Agglutinative language

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutive</td>
<td>katu</td>
<td>katua</td>
<td>katuak</td>
<td>katuok</td>
</tr>
<tr>
<td>Ergative</td>
<td>katuk</td>
<td>katuak</td>
<td>katek</td>
<td>katuok</td>
</tr>
<tr>
<td>Dative</td>
<td>katuri</td>
<td>katuari</td>
<td>katuei</td>
<td>katuoi</td>
</tr>
<tr>
<td>Genitive1</td>
<td>katuren</td>
<td>katuaren</td>
<td>katuen</td>
<td>katuon</td>
</tr>
<tr>
<td>Associative</td>
<td>katurekin</td>
<td>katuarekin</td>
<td>katuekin</td>
<td>katuokin</td>
</tr>
</tbody>
</table>

... ~with cat with the cat with the cats ~with these cats

14 different cases

In fact, at least 360 possible word forms for every noun or adjective

In theory, more than one million word forms are possible for them
Basque. Linguistic features:
Case suffixes and free order of components

The dog brought the newspaper in his mouth

<table>
<thead>
<tr>
<th>Subject</th>
<th>Object</th>
<th>Modifier</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Txakur-rak</td>
<td>egunkari-a</td>
<td>aho-an</td>
<td>zekarren</td>
</tr>
<tr>
<td>The-dog</td>
<td>the-newspaper</td>
<td>in-his-mouth</td>
<td>brought</td>
</tr>
<tr>
<td>ergative-3-s</td>
<td>absolutive-3-s</td>
<td>inessive-3-s</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Object</td>
<td>Modifier</td>
<td>Verb</td>
</tr>
<tr>
<td>Egunkari-a</td>
<td>txakur-rak</td>
<td>zekarren</td>
<td>aho-an</td>
</tr>
</tbody>
</table>

Alternative possible orders:

- Txakur-rak aho-an egunkari-a zekarren.
- Txakur-rak aho-an zekarren egunkari-a.
- Egunkari-a txakur-rak zekarren aho-an.
Basque. Linguistic features:
Ergative language & multiple agreement

- Ergative case. Subject of transitive verbs
 - I am: **Ni** naiz (absolutive)
 - I saw the cat: **Nik** katua ikusi nuen (ergative)

- Agreement in number and person between verb and (subject, object and indirect object)
 - I saw the cat: **Nik** katua **ikusi** nuen
 - I saw the cats: **Nik** katuak **ikusi** nituen
 - I saw you: **Nik** zu **ikusi** zintudan
We presented an open proposal for making progress in HLT (Aduriz et al., 1998).

Anyway, the steps proposed did not correspond exactly with those observed in the history of the processing of English.

- Resources available for the treatment of Basque allowed facing problems in a different way.
- English LRs did not evolve as the result of a single coordinated plan.
- Instead, many independent efforts produced these English LRs to address specific project needs.
Strategy to develop HLT in Basque
IXA Research Group

- IXA group: research group created in 1988.
- Our aim was to face the challenge of adapting Basque to HLT.
 - 1986: 5 university lecturers (computer science)
 - 2013: Interdisciplinary team
 - 31 computer scientists and 10 linguists
- Collaborating with 7 companies from Basque Country and 5 from abroad
- Involved in the birth of two new spin-off companies
- 10 HLT products valuable to promote use of Basque.

http://ixa.si.ehu.es
Strategy to develop HLT in Basque
IXA Research Group

- IXA group: research group created in 1988.
- Our aim was to face the challenge of adapting Basque to HLT.
 - 1986: 5 university lecturers (computer science)
 - 2013: Interdisciplinary team
 - 31 computer scientists and 10 linguists
- Collaborating with 7 companies from Basque Country and 5 from abroad
- Involved in the birth of two new spin-off companies
- 10 HLT products valuable to promote use of Basque.

http://ixa.si.ehu.es
Underlying strategy

- Need of **standardization** of resources to be useful:
 - in different researches
 - in different tools
 - in different applications

- Need of **incremental design and development** of language foundations, tools, and applications in a parallel and coordinated way in order to get the best benefit from them
Our steps on standardization of resources brought us to adopt TEI and XML standards as a basis for linguistic annotation at the different levels of processing. Definition of a general methodology for corpus annotation (Artola et al., 2009).

Taking as reference our experience in incremental design and development of resources/tools, We propose four phases as a general strategy for language processing (Alegria et al., 2011).
Strategic priorities: from basic research to application development

- Research & development
 - End-user applications
 - Language tools
 - Basic & applied research
 - Linguistic foundations
 - Linguistic resources
Phase I: laying foundations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
<td>Xuxen Spelling Checker (60K units)</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexicon</td>
<td></td>
<td>EDBL Lexical data base (60K items)</td>
</tr>
<tr>
<td>Morphology</td>
<td>Morphological analyzer</td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>Raw text (100K words)</td>
<td>Morph. hand disambiguated (30K words)</td>
</tr>
</tbody>
</table>
Phase II: first basic tools and applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
<td>Xuxen Spelling Checker (60K units)</td>
<td>Multimeteo basic MT application</td>
<td>Xuxen 2.0 (80K)</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td></td>
<td></td>
<td>Zatiak-Ixati Chunker</td>
</tr>
<tr>
<td>Lexicon</td>
<td>EDBL Lexical data base (60K items)</td>
<td>EDBL 2.0 (80K items)</td>
<td>Elhuyar-Word es-eu dictionary</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Morphological analyzer</td>
<td></td>
<td>Eustagger</td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>Raw text (100K words)</td>
<td>Morph. hand disambiguated (30K words)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase III: more advanced tools and applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xuxen 2.0 (80K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xuxen 3.0 (100K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anhitz (QA, MT, IE-IR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matxin (RBMT)</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexicon</td>
<td>EDBL Lexical database (60K items)</td>
<td>EDBL 2.0 (80K items)</td>
<td>Elhuyar-Wordes-eu dictionary</td>
<td>EDBL 3.0 (100K items)</td>
<td>UZEL_MSWord Synonym. Dict.</td>
</tr>
<tr>
<td>Morphology</td>
<td>Morphological analyzer</td>
<td>Eustagger</td>
<td></td>
<td>Eihera (Named entities R)</td>
<td>Eulia tagging tool</td>
</tr>
<tr>
<td>Corpus</td>
<td>Raw text (100K words)</td>
<td>Morph. hand disambiguated t (30K words)</td>
<td>EPECE corpus (synt hand disamb.200K words)</td>
<td>ZT corpus (lemma 6M word; lemma hand disamb 1M words)</td>
<td></td>
</tr>
</tbody>
</table>
Phase IV: multilinguality and general applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Xuxen</td>
<td>Multimeteo</td>
<td>Xuxen 2.0</td>
<td>Xuxen 3.0 (100K)</td>
<td>Xuxen 4.0 (120K)</td>
<td>Ihardetsi (QA)</td>
</tr>
<tr>
<td></td>
<td>Spelling Checker (60K units)</td>
<td>basic MT application</td>
<td>Anhitz (QA, MT, IE-IR)</td>
<td>Matxin (RBMT)</td>
<td></td>
<td>BASYQUE (Lexic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUSMT (SMT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Newsreader, Paths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(event extraction)</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IXA-pipes (en, es, eu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parsing tools: Name-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>entities, coreference,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>morf, synt, sem</td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
<td></td>
<td>Basque Wordnet</td>
<td></td>
<td>(Eu)SemCor corpus,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCR Wordnet</td>
<td></td>
<td>Propbank (Basque verbs),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WSD-Ixa</td>
<td></td>
<td>UKB (WSD algorithm)</td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td></td>
<td>Zatiak-Ixati Chunker</td>
<td></td>
<td></td>
<td>Maltixa (MALT parser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Erreus corpus of errors</td>
<td></td>
<td>EDGK dependency parser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ancora, EPEC corpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexicon</td>
<td>EDBL Lexical data base</td>
<td>EDBL 2.0</td>
<td>Elhuyar-Word es-eu</td>
<td>EDBL 3.0 (100K items)</td>
<td>EDBL 4.0 (120K items)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(60K items)</td>
<td>(80K items)</td>
<td>dictionary</td>
<td>UZEI_MSWord Synonym.</td>
<td>Lexkit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dict.</td>
<td>Dicc. Escolar Cubano</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Morphological analyzer</td>
<td>Eustagger</td>
<td></td>
<td>Eihera (Named entities R)</td>
<td></td>
<td>BertsolariXa LibiXaml</td>
</tr>
<tr>
<td>Corpus</td>
<td>Raw text (100K words)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morph. hand disambiguated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WebCorpusa</td>
</tr>
<tr>
<td></td>
<td>t (30K words)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(raw text (200M words),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu)SemCor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(sem, 4K words)</td>
</tr>
</tbody>
</table>
Can NLP help?

Helping to climb to the next level?

- Basque from 4th level to 5th level? (1988-2009)

- Quechua? (2012 - ...)

Diagram:
- English: 1 language
- Central languages (top 10 languages): 10 languages
- Languages with any HLT application: 60 languages
- Languages with any lexical resource in Internet: 250 languages
- All the world languages: 7,000 languages
Quechua. Linguistic features

- Aglutinative language. 130 suffixes
- No ergative language no multiple multiple agreement

But since 2000...
- No official language → ~Coofficial language
- Out of the education system → Small integration in education
- Several dialects
- Out of media
- Out of industry
- Standard (1994) still in discussion
Hinantin Group
Working for Quechua

Colaborating with:
• Univ. of Zurich
• Univ. Of Basque Country (Ixa)
Hinantin Group

Working for Quechua

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>2012-2014</th>
<th>2014-...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
<td>Spelling Checker (8K units)</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexicon</td>
<td></td>
<td>Lexical database (15K items)</td>
</tr>
<tr>
<td>Morphology</td>
<td>Morphological analyzer</td>
<td>Tagger ??</td>
</tr>
<tr>
<td>Corpus</td>
<td>Raw text (10K words)</td>
<td>Morph. hand disambiguated t (3K words)</td>
</tr>
</tbody>
</table>
Can NLP help to languages in the 5th and 6th levels?

- Fifth level:
 Languages that only have writing systems
 - Other 2,014 languages are included here

- Sixth level:
 Only-spoken languages
 - At least other 4,500 languages
Outline

- How are languages facing the ICT and HLT challenges?
- Which languages are "less resourced"? Six different levels
- Can NLP help less resourced languages to promote their use?
- Related work
- Conclusions
Related work

- "Corpus linguistics around the world" (Wilson et al., 2006) describes corpus resources on several languages.

- Roadmap of tools:
 - "Basic toolkit for HLT" (Agirre et al. 2002) (IXA group)
 - "Basic Language Resource Kit (BLARK)" (Krauwer, 2003)
 - Joint initiative between ELSNET and ELRA in 1998.
 - Maegaard et al. (2004) describe a BLARK for Arabic
 - Simov et al. (2004) for Bulgarian.
 - The term BLARK has been very successful and it is used in a large number of papers in the area.
Related work

- Streiter et al. (2006) report on HLT projects for noncentral languages and proposes instructions for funding bodies and strategies for developers.
 - They use the *non-central* term and
 - Benefits and unsolved problems when using open source software for non-central languages is very interesting.

- Forcada (2006) remarks the opportunity of using open source machine translation for minor languages.
Related work

- The ELSNET network of excellence prepared definitions for a language resources and evaluation roadmap, using for that the HLT Roadmap System, a framework for implementing technology roadmaps (Busemann & Uszkoreit, 2004).
 - Several different roadmaps have been published.
 - As in our first proposal in 2002 the elements in the diagram (HLT products) are classified into three equivalent subsets: (Language Resources / Language Processing / Language Usage) in their roadmap, and Language resources/ Language Tools / Language Applications) in our strategy.
 - Their level of granularity in the diagram elements is very much fine than ours,
 - definition of a roadmap for “central languages”, mainly for the main European official languages
Related work

- Borin (2006 and 2009)
 - points to the promise of the HLT for lesser-known languages and describes the linguistic diversity in the information society.
 - He cites the paper from Ostler "a language will not get by in the world of today unless it is equipped with a parser and a multi-million-word corpus of text".
 - He analyzes the relation among the sociology of language and HLT, and guises us some strategic considerations, i.e. "those languages for which information extraction resources and tools will be available will probably exhibit a more secure and prominent presence on the Semantic Web than those lacking such resources, and as a consequence, acquire the status in the eyes of their speakers that such a presence confers".
Related work

- Efforts to create, coordinate and make language resources and technology available and readily usable for a big number of languages
 - Clarin
 - Flarenet
 - MetaNet
- SALTMIL ("Speech And Language Technology for Minority Languages") has been organizing seven conferences related to HLT and less-resourced languages.
Conclusions

- From our experience we defend that research and development for less resourced languages should be faced to build a BLARK following these points:
 - 1) high standardization
 - 2) open-source
 - 3) reusing language foundations, tools, and applications
 - 4) incremental design and development of them.

- We have defined six different sets of languages attending to their penetration on HLT technologies.

- We think that our strategy to develop language technologies could be useful for several hundred languages: those that have developed a written standard and perhaps also some initial lexical resources but that are still very far from central languages.
Conclusions

- We know that any HLT project related with a less privileged language should follow those guidelines, but from our experience we know that in most cases they do not.

- We think that if Basque is now in a good position in HLT is because during the last twenty years those guidelines have been applied even though when it was easier to define "toy" resources and tools useful to get good short term academic results, but not always reusable in future developments.

- Similar experiences with other languages: Czech is another exception to the correlation between language size and LR scarcity; the excessive rich body of LRs for Czech is due to the coordinated efforts of a few ambitious and productive researchers.

- We collaborate with Hinantin group in creating LT for Quechuan