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|. CHAPTER

Intro duction

Peoplelike to cortrol things and situations. They feel good when they are
ableto conquernew ervironmens, whenthey becomemastersin worlds that
were oncearcane. The processof domination requiressomee ort and gives
somerewards. For instance, little children like to hear the samestory or
watch the samevideo once and again until they totally learn it, and even
after that, they feel happy getting bad to it for a while. For adults similar
things happen, we like to play sports at which we are good (and we get better
doing it), and we like to know more details about domainsin which we are
experts (like arts or again, sports).

Both babiesand adults feel rewarded when they start to talk and un-
derstand a languagenew to them. This feeling endswhen the languageis
mastered,and then they do not think much of it. It becomesanother ordi-
nary cortrolled world; likewalking, cooking, or playing cards. A newproblem
beginsfor us when we try to represeih and model these conqueredplaces.
When we move to an ervironment that we have known for all our lifetime
as (in my case)the Basquelanguage,it seemshat not much can escag to
our cortrol. We understand almost ewverything that it is said, and we can
say whatewver we feel inside. It looks like we would not have much trouble
writing rules, or represetations describing\how we do it". Somecourtries
even have institutions dewted to prescribe how the languageshouldbe used,
and for almost all languagesthere are listings of the meaningsof the words
and expressionghat we use(dictionaries). It seemdike we could try to write
somecode to medanizethe languageunderstanding/producing processin a
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computer.

Howeer, we certainly cannotdo that. Languagecanbe seenasa discrete
conbinatorial system(Manning and Sctze, 1999),which meansthat from a
xed number of elemeits (words) conbined, we can obtain in nite outcomes
(sertences). Whatever path we take to solve the problem, the complexity
arisesimmediately. Thesekind of problems, when humanstry to go a step
further and formalize the ways they interact with the worlds they cortrol,
are those faced by Arti cial Intelligence (Al) researb. Natural Language
Processing(NLP) is oneof those problems,and many researbersfall in love
with this eld preciselybecauséNatural Language"is the main tool we use
to cortrol one exciting world: the comnunication with other humans. The
processthat is happening at this momert when you go along theselines.

Thus, we can take any sertence as an example of comnunication be-
tweenhumansusing Languageasthe code. If we could model the rules that
lie behind the process,amazingapplications could be created. Instead of a
standard viewer, this text could be read with a Natural LanguageUnder-
standing (NLU) tool*. The tool would understandthe commandswe give in
English (in place of having to look for them in the meru), and also would
understandthe text that is written, allowing usto make querieslike:

1. Can you get me a short version of this dissertation, of 20 pagesmore
or less?

2. Where did the writer say somethingabout parallel corpora?

3. Canyou translate the whole documert into Basque?

If you would askthesequestionsto a personthat hasread this disserta-
tion carefully, he would understand the queriesvery easily and, with more
e ort, he would have the ability to perform the requestedtasks (assuming
he knows English and Basque). For the hypothetical NLU tool, thesetasks
are still a long way ahead. As we said previously this is a very appealing
eld for many researbers, and a big e ort hasbeenput in NLP. Howeer,
the more sophisticatedapplications that we can nd in the market, sud as
Machine Translation (MT) Tools, Question Answering Systems,or Natural

1The NLU acronym is used in this book to refer to a software that would be able
to perform processing,represertation, and inference of the text that receives as input,
imitating human capabilities. We will referto NLP tools for programsthat perform some
of the intermediate tasks that would aid the hypothetical NLU tool.
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Languagelnterfacesto Databasesdo not shawv real understandingof human
communication. For the NLU tool that would answer questions1-3, the kind
of reasoningrequired would be very complexto model. When processing
the questionsand the text of this book, the problem has beentraditionally
separatedon thesesubtasks(Allen, 1995):

Morphological analysis: how words are constructed from more basic
meaningunits called morphemes.

Syntactic analysis: how words can be put together to form correct
sertences. It determineswhat structural role ead word plays in the
sertence, and the phrasestructure.

Semarnic analysis: the meaningof words and and how thesemeanings
conbine in the sertences.

Pragmatic analysis: how sertencesare usedin di erent situations and
how this a ects the interpretation.

Discourseanalysis: how the immediately precedingsertencesa ect the
interpretation of the next sertence.

World knowledge: the general knowledge about the structure of the
world that languageusersmust have in order to fully understandthe
sertence.

Eadh of thesesubtasksreceivesa big number of researbers eagerto test
their approadeson them, using empirical approades, or introspective rule-
basedmethods. Eadh subtaskcan be divided into many others, for instance,
for identifying phrasesin a sertence, it would be important to know whether
the words are verbs, nouns, or from other parts of speet (PoS). The hope
is that theselow-level tools constitute building blocks that will sene for the
NLU applications of the future.

.1 Word SensdisambiguatiofWSD)

| belongto a group (IXA ?) interestedin the processingof natural language,
and that makes us get involved in many di erent aspects of this process.

2http://ixa.si.eh u.es
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Personally I nd lexical ambiguity resolution a very interesting subtask of
the big picture of NLU. This problem consistson determining the senseon
which a word is usedin a text, and in the NLP eld is known as Word
Sense Disam biguation (WSD) . As many other NLP tasks, this problem
is not noticeableuntil you start to think on modeling it. PeoplesolvesWSD
constartly with many ambiguouswords in ead sertence. For instance, if we
recall the rst questionwe would give to the NLU tool \ Can you get me a
short version of this dissertation, of 20 pagesmore or less?', and focuson
the word pages ewery English spealer knows its meaningin the sertence.
Moreover, if they were to look in a dictionary for more information, they
would seard for the lemma page as a noun. Below, we can seethe list of
meaningsthey would obtain from the WordNet lexical database(Fellbaum,
1998):

a. page{ (especially oneside of a leaf)

b. Page,Sri Frederik HandleyPage{ (Englishindustrialist who pioneered
in the designand manufacture of aircraft (1885-1962))

c. Page,ThomasNelsonPage{ (United Statesdiplomat and writer about
the Old South (1853-1922))

d. page,pageloy { (a boy who is employed to run errands)

e. page{ (a youthful attendant at o cial functions or ceremoniesud as
legislative functions and weddings)

f. page,varlet { (in mediewal times a youth acting asa knight's attendant
asthe rst stagein training for knighthood)

We know that the intended meaningin the serienceis the rst on the
list, but how could a program guess?There are many stepswe have to make
in order to processa text, but let us cortinue with the word pages asit is.
There are tools nowadays (lemmatizersor stemmers,and PoS taggers)that
can tell us with good precisionthat page is the lemma of pages and that
it functions as a noun in the cortext of the question. This is not easyto
do, as pagescould be also a verb form; in order to do that, the PoS tagger
has to know the contexts on which the word form appears, and solwe the
ambiguity. We will assumethat we can usethosetools (and othersto come)
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asbuilding blocks in orderto walk towardsthe tool this dissertationis about:
an automatic WSD tool.

Following with the example,those nice lemmatizer and PoS taggerstell
us that in question (1) we have a noun spelled pages and that its root is
page Now, the NLU tool would needto know something more about this
word in order to answer the question. What doespagemean?Let us go badk
to the dictionary de nitions. From the above list, we can discard b) and c),
becausethey are in uppercase,suggestingthat they are proper nouns, and
pagesis in lowercasebut how canwe tell amongthe others?

As we will seethroughout this dissertation, the problem is to build a
model in a way that allows us to recognizethe sensesf the words in any
of the in nite sertencesthat can be uttered. Focusing on the explicit dis-
ambiguation of word sensedinked to a dictionary is not the only way to
achieve understanding. Someauthors descrike the limitations of this xed
setting (Kilgarri and Tugwell, 2002), and argue that a more dynamic ap-
proach (including a lexicographerin the loop) should be taken in order to
represeh the word meaningsin a corpus. But whatever way we chooseto
obtain deepunderstandingof the text with automatic means,we think that
the robust NLU interface should, in the end, be able to tell which one (or
ones)from a given list of sensess (are) the closestto the intended meaning
of pagesin the context. In this dissertation, we will focus on the explicit
WSD approac h, with a xed list of senses We think that this line of
researt can provide fruitful insight into the deeper problem of NLU.

|.2 Appoacheso WSD

Now that we have a xed list of four noun senseso choose for the word
pages how do we approad the problem? One way to do it is to idertify
the senseghe word can have in a dictionary or lexical resource(as we did
for page), and construct a model of eat sense. We can classify the WSD
methods that follow this approad accordingto the knowledgethey useto
build the sensemodels:

Basedon hand-taggedcorpora: the sertenceswherethe di erent senses
of the word are used.

Machine ReadableDictionary (MRD) based: the information in the
dictionary ertries for ead sense.
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Ontology based:the knowledgestoredin an ontology, with its semairtic
relations with other senses.

Other approadies: normally a conbination of the previous sources,or
other lessexplored sources(hand-built rules, for example).

Once we have information about the list of sensesthe serience that we
are trying to understandis somehav comparedto our sense-mdels. E.g. in
order to know the senseof pagesin the question\ Can you get me a short
version of this dissertation, of 20 pages more or less?', we will compare
the information we can extract from this sertence and cortrast it with the
data we have for ead senseof pagevia corpora, MRDs, ontologies, or other
means.

In order to represenh the cortext of the occurrencewe warnt to disam-
biguate, we extract features from the example. The featuresprovide us the
piecesof information that we will rely on to discriminate amongthe senses.
We employ di erent tools to obtain them. For instance, somefeaturesthat
we could extract from question(1) for the target word pagesarethe following:

Word-to-the-left \20" (Local feature)
Lemma-bigram-in-cotext \short versiorf (Topical feature)
\page" Head-of-PP-malifying \version" (Grammatical feature)
Text type scienti ¢ article (Domain feature)

Someof the featureswill only require simpletoolslike tokenizersor stem-
mersto be extracted. Other tools that parsethe sertencesfor grammatical
dependenciespr that classifythe text into domainsare not aseasyto obtain.
As they arestill object of resear, we have to assumethat someerror will be
introducedwhen we usethesekind of features. Howewer they will hopefully
provide usefulinformation about the context.

The selectionof featuresis very important, as they have to re ect the
relevant information in the corntexts, and yet they have to be genericenough
to beappliedto avariety of cases.We will dewote further attention to feature
typesin chapterslll and IV.

As we said, state-of-the-art systemscould be classi ed accordingto the
knowledge sourcethey usein order to learn their models. Another coarse
distinction is usually applied betweenthe systemsthat rely on hand-tagged
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corpora (sugervisal systemg, and thosethat do not requirethis resourceg(un-
supervisal systemg. The former are called supervised becausehey needthe
supervision of a personthat iderti es the words in a sertence as pertaining
to a senseor another. This distinction is important becausehe e ort to tag
the sensegs high, and it would be costly to obtain tagged examplesfor all
word sense&nd all languagesassomeestimationsshav (Ng, 1997;Mihalcea
and Chklovski, 2003). In this dissertation, we will focus on supervised

ML systems. Howewer, we will try to nd alternativesto alleviate the
hand-taggingcostin chapter VI.

.3 Stateof theart in WSD

An important referenceof the state of the art in WSD is the initiativ e for the
Evaluation of Systemsfor the Semaric Analysis of Text, known asSenseal®.
This competition held its third workshopon July, 2004(the rst edition took
placein 1998, and the secondin 2001). Senseal has beengrowing in lan-
guagestasks,and participants over the years. Wewill dedicatemore spaceto
Senseal in chapter I1. At this point we want to stressthat regardingdisam-
biguation performance the resultsin the literature andin Senseal shav that
supervised ML is the most e ective paradigm. Newertheless,curren t sys-
tems obtain around 70% accuracy (Snyder and Palmer, 2004),which is
not enoughfor practical applications. Somereasonghat could explain these
low scoresare the following:

1. The de nition of the problemis wrong. As we said, someauthors claim
that de ning the meaningof a word asa discretelist of sensesloesnot
model correctly its behavior (Kilgarri and Tugwell, 2002). There are
suggestionghat the instancesof a word would be better represeted
as clusters when they have similar meanings,always in relation to a
task or corpora (Kilgarri, 1997). This issuehasnot beentackled here,
and the classicaldiscrete model has beenadopted. This is the model
followed by all of the currernt supervisedWSD systems.

2. Senseinventory and granularity. In the last few years WordNet has
beenwidely adoptedasthe sense-imentory of choicein the WSD com-
munity (Fellbaum, 1998), and WordNets for di erent languageshave

3http://www.sensev al.org
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beendeweloped*. This resourcehasbeenappliedin many of the Sense-
val tasks for English, and alsofor other languagedike Basque,ltalian,
Spanish,etc. WordNet givesthe possibility of comparingthe results of
di erent researt groups,and o ers a big conceptualnetwork that can
aid the disanbiguation process,as well as manually tagged corpora.
Howe\er, the sensanvertory is clearly too ne-grained for many tasks
and this makesthe disanbiguation very dicult. E.g. surely the 45
sense®f give are not neededin a MT task, wherenot every sensewill
have a di erent translation for another language.

3. ML algorithms are not adequately applied to the problem. Methods
comingfrom the ML comnunity have beenwidely applied to the WSD
problem: Naive Bayes, DecisionLists, AdaBoost, Support Vector Ma-
chines (SVM), etc. Howewer, the comparative results shav that even
the most sophisticated methods have not beenable to make a qual-
itative jump and get closeto the solution of the problem. Actually,
for eat di erent word, di erent algorithms and features achieve the
best results. Somevoicesclaim that the optimization of ML methods,
parameters,and feature typesper word should help solve the problem
(Hoste et al., 2002).

4. The feature setsusal to model the languageare too limited. Tradition-
ally simple feature sets consistingin bigrams, trigrams, and \bags of
words" have beenusedto model the cortexts of the target words. But
in order to be robust, the ML methods should rely in as much infor-
mation from the texts as possible. Features obtained with complex
analysisof the text (morphological, syrtactic, semaric, domain, etc.)
and the combination of di erent typesof featurescould be used.

5. The sparse data problem. In NLP most of the ewerts occur rarely,
even when large quartities of training data are available. This prob-
lem is specially noticeablein WSD, wherehand-taggeddata is di cult
to obtain. Besides, ne-grained analysis of the cortext requiresit to
be represeted with thousandsof features, some of them very rare,
but which can be very informative. Thereforethe estimation of rare-
occurring featuresis crucial to have high performance,and smoothing
techniguescan be usefulin this process.

“http://www.globalw ordnet.org/gwa/w ordnet table.htm
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6. Necessity of extra training data. Existing hand-taggedcorpora do not
seemenoughfor currert state-of-the-art systems. Hand-taggeddata
is di cult and costly to obtain. Estimations of the required tagging
e ort are not optimistic, and methods to obtain data automatically
have not readhed the samequality of hand-taggeddata sofar. Besides,
the results reported usually in the literature are given for those words
that have training examplesbut a WSD tool shouldcover all the words
in the vocabulary.

7. Portability. The porting of the WSD systemsto betestedon a di erent
corpora than the oneusedfor training also presetts di culties. Previ-
ouswork (Ng et al., 1999;Escuderoet al., 2000c)hasshown that there
is a lossof performancewhen training on one corpora and testing on
another. This has happenedwith automatically-tagged corpora, and
also with corpora hand-taggedby independert teams of researbers.
The problem could be alleviated using tuning methods, or taking into
accourt the genre/domain of the corpora.

Theseissuesrepresen a wide researt space,and researbersfrom di er-
ernt elds have studied them from di erent perspectives. Our approat was
to test empirically di erent ways to overcomesomeof the above problems:

(1,2) Regardingthe rst two points on the list on how will we de ne a
word sensewe conceltrated on the \discrete sensdist" approad and chose
the WordNet senseinverntory whenewer possible. As we said, WordNet has
the advantage of being widely usedin the comnunity, and it o ers impor-
tant resourcesasthe Semcorall-words hand-taggedcorpora (Miller et al.,
1993) and the conceptualhierardy. Besides this resourcehasbeena meet-
ing point for many researb groups, by meansof the Senseal settings, and
also becauseof other collaborative projects: EuroWordNet (Vossen,1998),
Meaning (Atseriaset al., 2004),Germanet(Kunze and Lemnitzer, 2002), etc.

(3) The third issueon the list refersto the ML methodsto apply. Early in
this work, the state of the art in WSD showed that there waslittle di erence
in the performanceof di erent ML algorithms. A method basedon Decision
Lists (DL) (Yarowsky, 1994)obtained the best performancein the Senseal-
1 competition; this algorithm o ered someadvantagesover other statistical
methods like Naive Bayes (NB): as DLs are basedon the best single evi-
dence,in opposition to classi cation basedon the conbination of cortextual
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evidencesmultiple non-independen featurescan be included in the system
without having to model the dependencies.This factor would allow to ex-
plore feature-typescomingfrom di erent analysisof the text (morphological,
syrtactic, sematic, etc.).

(4) We decidedto apply the DL algorithm in order to focus on the 4th
issuein the list (di erent typesof featuresto model the cortext), instead of
trying di erent ML methods. Our rst hypothesiswasthat there wasimpor-
tant information in the cortexts of the words that was useful for learning,
and that the integration of thesefeatureswould cortribute signi cantly to
the resolution of the WSD problem.

As our work wasgoingon, many approatesfrom the ML community were
applied to WSD (AdaBoost, SVM, ...), and other methods, like the Vector
SpaceModel (VSM), proved to be well suited for the task, performing sig-
ni cantly better than DLs. Thus, to be able to test our approades with
state-of-the-art methods, and compareour performancewith other systems
(cf. in the Senseal competitions), we incorporated someof thesealgorithms
to our experimerts.

(5) Regardingthe sparsedata problemin WSD, we alsoexploredsmooth-
ing techniquesto improve the estimation of the featuresin the training data
usingdi erent ML methods. For our study, we wereinspiredby a method pre-
serted in (Yarowsky, 1995a). We implemerted a method wherethe smaoothed
probabilities were obtained by grouping the obsenations by raw frequencies
and feature types;and also by interpolation of the obsened points.

(6,7) In order to make supervised WSD a realistic goal, our hypothe-
siswas that the problem of the knowledgeacquisition bottlenedk (6th issue
above) could be alleviated by automatic means. We analyzedthe \monose-
mousrelatives" method by Leacak et al. (1998),and testedit usingthe web
as untagged corpus and the Senseal competition data for ewaluation. We
obsenedthe di cult y of introducing new examplesin a hand-taggedcorpus,
which took us to study the e ect of the domain/genre of the corpora we use
for learning and testing (7th problemin our list).
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.4 Contribution®f the dissertation

Thus, our aim was to shedlight on the needsof a WSD tool, and try to
cortribute to move the eld forward. We exploredtwo main hypothesesin
this dissertation:

1. The useof richer features(syntactic, semaiic, or domain features)can
provide relevant information of the corntexts, and it should improve
signi cantly baselinemethods that are trained on classicfeatures.

2. The automatic acquisition of examplesby meansof WordNet relatives
can alleviate the knowledge acquisition bottlened, and improve over
other unsupervised(or minimally supervised)approades.

We proposeddi erent ways to exploretheseissuesdewelopingapproates
not previously descriked in the literature. All in all, we think that our main
cortributions on theseinitial hypothesesare the following:

Syntactic features (chapter 1V) : We exploredthe cortribution of
an extensiwe set of syrtactic featuresto WSD performance. We pre-
sented seeral experimerts and analyseson thesefeatures. The study
included two di erent ML methods (DL and AdaBoost (AB)), and a
precision/coveragetrade-o systemusing thesefeature types. The re-
sults shav that basic and syntactic features cortain complemenmary
information, and that they are useful for WSD. The cortribution of
this type of featuresis specially noticeablefor the AB algorithm in the
standard setting, and for DLs when applying the precision/coverage
trade-o .

Semantic features (chapter 1V) : We applied two approades to
study the cortribution of semarnic featuresusingthe WordNet hierar-
chy and the Semcorall-words corpus. On the onehand, we constructed
newfeaturetypesbasedon the synsetssurroundingthe target word, the
hypernyms of thesesynsets(at di erent levels), and alsotheir semartic
les. On the other hand, we learneddi erent modelsof selectionalpref-
erencedor verbs, usingthe relations extracted from the Semcorcorpus
by Minipar. Our main conclusionswere that the \bag-of-synsets"ap-
proach does not seemto benet much from the WordNet hierarchy.
Instead, selectionalpreferenceacquisition o ers promising results with
a view to their integration with other feature types.
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Automatic acquisition of examples (chapter VI) : We ewaluated
up to which point we can automatically acquire examplesfor word

sensesand train supervised WSD systemson them. The method we
applied is basedon the monosemouselativesof the target words (Lea-
cock et al., 1998), and we studied some parametersthat a ect the
quality of the acquired corpus, sud asthe distribution of the number
of training instancesper eat word sensgbias). We built three systems
with di erent supervisionrequiremerns: fully supervised(automatic ex-
amplesaddedto hand-taggedcorpora), minimally supervised (requir-

ing information about sensedistributions), and unsupervised(without

hand-taggedexamples). We showned that the fully supervised system
combining our web corpuswith the examplesin Semcorimprovesover
the samesystemtrained on Semcoralone (specially for nounswith few
examplesin Semcor). Regarding the minimally supervised and fully

unsupervisedsystems,we demonstratedthat they perform well better
than the other systemsof the samecategorypresetied in the Senseal-
2 lexical-samplecompetition. Our systemcan be trained for all nouns
in WordNet, using the data collectedfrom the web.

Genref/topic  shift (chapter VI 1): We studied the strength of the

\one senseper collocation” hypothesis(Yarowsky, 1993)usingdi erent

corpora for training and testing. Our goal wasto measurethe impor-

tance of introducing examplesfrom di erent sourcesin WSD perfor-

mance. We focusedon the domain/genre factor, and performed our

experimerts in the DSO corpus, which comprisessertencesextracted
from two di erent corpora: the balanced BC, and the WSJ corpus
corntaining pressarticles. Our experimerts shov that the one sense
per collocation hypothesisis wealker for ne-grained word sensedis-
tinctions, and that it does hold acrosscorpora, but that collocations
vary from one corpusto other, following genre and topic variations.

This would explain the low performancefor WSD acrosscorpora. In

fact, we shaved that when two independert corpora share a related
genre/topic, the WSD results are better.

Other interesting resultsthat cameout from our work on this dissertation

are the following:

High-precision WSD tool for English (chapter 1V) : We tested
on Sensewdl-2 data di erent systemsthat could provide high precision
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at the cost of coverage. The results were promising, as two meth-
ods basedon DLs readed 93% precision at 7% coverage (decision-
threshold method), and 86% precision at 26% coverage (feature se-
lection method). Syrtactic features are specially helpful for feature
selection.

Supervised WSD tool for English (chapter V): We dewloped a
supervised systembasedon the combination of di erent ML methods
and in smaoothing techniques,descritedin chapter V. In the Senseal-3
English lexical-sampletask, it ranked 5th among47 submissionsonly
0.6%lower than the best system. This systemalso participated in the
all-wordstask, asa componern of the \Meaning" system,which ranked
5th among 26 systems.

Supervised WSD tool for Basque (chapter V) : We have adapted
our modelsto Basque,which is an agglutinative languageand presens
new challengeswhen de ning the feature set. We have tested this tool
on the Senseal-3 Basquelexical-sampletask data, and it outperforms
the results of other systemsthat took part in the ever.

Unsup ervised WSD tool for English (chapter VI) : We built

an unsupervised systemrelying on automatically obtained examples,
which shows promising resultsfor alleviating the knowledgeacquisition
bottlened. It hasbeentestedon the Senseal-2 English lexical-sample
task, preseiing the best performanceamongsystemsof this kind.

There are also some resources(available for researt) that have been
deweloped as a result of our work:

Selectional preferences (chapter V) : Using the syrtactic depen-
dencies(object and subject) extracted from Semcor,we constructed
and evaluated selectionalpreferencegor verb and noun classesn Word-
Net. This database,consistingon weighted relations between synsets,
is available by meansof a Meaning license,or by personalrequest.

Sensetagged corpus (chapter VI) : We constructedautomatically a
sense-taggedorpusfor all nounsin WordNet. This resources publicly
available, and can be downloadedfrom

http://ixa2.si.ehu.es/pub /sen secorpus.
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Finally, during this researbt, we have published our results in di erent
articles. The completelist is given in appendix A.

1.5 Structureof the dissertation

In summary, this is the structure of this dissertation,and the issuesaddressed
by ead chapter:

First chapter. This introduction.

Second chapter. State of the art: resourcessystems,and evaluation.
This chapter will be dewted to the descriptionof di erent methods and
researb lines that are preseiing promising results in the WSD task.
First, we will descrike the main resourceghat are employed for WSD,
including lexical databasescorpora, and somewell-known learning al-
gorithms. The main sectionswill be dedicatedto the Senseal compe-
titions and the participating systems.

Third chapter. BaselineWSD system: DL and basicfeatures. In this
chapter, we will study the DL algorithm, trained on \classic" feature
typesand currertly available hand-taggeddata; all in an extensiwe set
of experimerts. The tests and results will sene as a referencefor the
following chapters, which focuson di erent aspectsof the disanbigua-
tion task.

Fourth chapter. New feature types: syntactic and semaric knowl-
edge. In this chapter we will analyze richer feature sets: syntactic
features,semaric features,and selectionalpreferences.We will study
the cortribution of di erent feature typesto the disanbiguation pro-
cess,relying on two di erent ML methods. We will also explore the
cortribution of new featuresto a high precisionWSD system.

Fifth chapter. Sparsedata problem and smaoothing techniques. Dif-
ferert smoothing techniqueswill be appliedto a set of ML algorithms.
The goal of this chapter will be to obtain better estimations of fea-
tures for improved WSD, helping to alleviate the sparsedata problem.
We will also analyzethe behavior of di erent ML methods and their
combination in order to improve performance.
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Sixth chapter. Automatic acquisition of sense-tagge@&xamples.Ap-
plication of the \monosemousrelatives” method (Leacoack et al., 1998)
for automatically acquiring sense-taggedgxamples. These examples,
and an automatic ranking of senseobtained with the method by Mc-
Carthy et al. (2004) will be usedto build di erent systemsto be e\al-
uated on the Senseal-2 dataset.

Seventh chapter. Portability and genre/topic of corpora. The goal
of this chapter wasto measurethe importance of introducing examples
from di erent sourcesin WSD performance. We focusedon the \one
senseper collocation™ hypothesis,and the e ect of the genreand topic
of the training and testing datasets.

Eighth chapter. Conclusionsand future work. This last chapter
summarizesthe main conclusionsof the dissertation and sketchesthe
further work on the openedreseart lines.



16

Intro duction




||. CHAPTER

State of the art: resources, systems, and
evaluation

In this chapter we will presen the state of the art for WSD. As we will

see, this is a task that has received a great deal of attention from many

researbers in NLP during the years. Becausean extensiwe survey of all

these works is out of the scope of this dissertation, we will organize the

chapter as follows. First we will briey introduce previouswork on WSD,

and alsojustify our organization of the analysisof the literature. The next

sectionwill descrike the main resourceshat are applied to WSD researé:

on the one hand, lexical databasesand dictionaries that are usedas sense
repository; on the other hand, publicly available corpora that is employed by

the systemsfor learning. The next sectionwill be dewted to presem some
well-known algorithms that have beenapplied to WSD, and which will be
employed in di erent experimerts throughout this dissertation. After that,

we will presen measuresand signi cance tests that are usedto ewaluate
WSD systems. The nal three sectionsof this chapter will be dedicated
to the Senseal competitions and the participating systems,focusingon the

English tasks.

1.1 Introduction

There hasbeena vast corpusof work on WSD sincethe fties. The history of
NLP is very much linked to this task, which was rst treated independerily
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in 1955 (Yngve, 1955). This happenedin the days of the big investmen
for MT in the United States of America. The lexical ambiguity problem
aroseimmediately, asit happenswhenwe try to construct applications that
require deepunderstandingof the texts. In fact, evidert errorsappearwhen
this problemis not addressedn someway, and the folklore of early Al keeps
stories like the biblical English sertence The spirit is strong, but the esh
is weak being translated from English into Russian,and bad into English.
According to the story, the resulting serience turned out to be The vodka
is gaod, but the meat is rotten. This can seema bit exaggerated,but even
nowadays, if we usea commercialMT tool, thesekind of errorswill appear

The notorious complexity of lexical disanbiguation was one of the argu-
merts that were raised against NLP funding in the early days of Al. One
famousexamplecamefrom Bar-Hillel's work (Bar-Hillel, 1960),who claimed
that it wasimpossiblefor a madine to disanmbiguate correctly betweentwo
main sensesf the word pen (the writing device, or the enclosedspace)in
the sertence \the box is in the perd'. A few years after that, the ALPAC
report was released(ALPAC, 1966), exposing the weaknessof the work on
MT, and stopping funding for NLP. The work on NLP was then re-orierted
to knowledgerepresemation and sematic networks, and there is whereWSD
had its spaceuntil the eighties, when the availability of large corpora and
the advert of Internet changedthe trend to empirical approadhesagain.

In recen years, extensiwe literature on WSD has beendewloped. Even
if WSD is not a nal NLP application, but an intermediate task sud as
PoS tagging or parsing, there are somefactors that make it attractive to
researbers:

The problem can be modeled as another classi cation task, and ap-
proachesfrom the ML community can be applied.

It is easyto evaluate new systemsagainst existing goldstandards.

The work with word sensess very much linked to the cognitive process
of represeting conceptsand knowledge.

Solving the lexical disanmbiguation problem should have an immediate
e ect in NLP tools, and createnew ones.

1For instance, if we usethe on-line demo of Systran 5.0 (http://www.systransoft.com)
to translate the exampleinto Spanish,and bad into English, we will comeout with \ The
alcohol is strong, but the meat is weak". We tried Russian rst, and the result was the
cryptic sertence\ The spirit of sil'n, but the esh is weak.".
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The impulsethat the WordNet resourceand the Senseal competitions
are giving to this task, joining the e orts of many groupsof researbers
in this area.

Thus, generalNLP books dedicate separatechaptersto WSD (Manning
and Sdwetze, 1999;Jurafsky and Martin, 2000;Dale et al., 2000). There are
alsospecialissueson WSD in NLP journals (Ide and Veronis,1998;Edmonds
and Kilgarri, 2002);and books dewoted speci cally to this issue(Ravin and
Leacak, 2001; Stevenson,2003; Agirre and Edmonds, forthcoming). Tradi-
tionally, aswe have seenin chapter I, WSD systemsare classi ed attending
to the type of knowledgethey rely on to build their models (hand-tagged
corpora, raw corpora, MRDs, ontologies, or conmbination of those sources).
Another distinction that is usually made, for instancein the Senseal com-
petitions, is betweensupervisedand unsupervisedmethods. However, nowa-
daysit is dicult to presen a strict classi cation. For example,in Senseal
we can seesystemsthat do not learn directly from the examples,but use
their prior distribution; also systemsthat use only a minimal number of
examplesto link the classesthey induce to the senseinverntory; and even
semi-automaticarchitectures that rely on lexicographersproviding cluesfor
disanbiguation by hand.

As this eld coversahugespacethe dewelopmert of an exhaustive survey
of WSD is out of the scoye of this dissertation, and we have to focuson the
aspects of the problem that interest us most, thosethat have beenlisted on
the introduction chapter. We will pay specialattention to the most successful
systemsfor WSD, both in the literature and in the Senseal competitions:
supervised ML techniques. Howewer, other promising approates for WSD
will be presened together with the correspnding motivations in relation to
our work. For a full accoun of the eld pleaseturn to the above references.

The Senseal workshopsare the best referenceto seewherethe eld is
moving, and they will sene us to organizethis chapter. At the momert of
writing this dissertation, the third edition in Barcelonawas just nished.
Fruitful discussionresulted from the analysisof the resultsin the workshop,
with leadingresearbersonthe eld sharingtheir views. Wewill presen the
state-of-the-artin WSD following the path of the three Senseal competitions
celebrateduntil this day (1998,2001,and 2004), focusingon the supervised
systemsin the English lexical-sampleand all-words tasks.

2The following mailing list (Sensewl-discuss) provides additional information:
http://listserv.h um.gu.se/mailman/listinfo/senseval-discuss.
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As we will see,the bestresultsin the last Senseal were achieved by sys-
tems that rely in di erent ML techniques (kernel-based,optimization, and
voting), and in most casesinclude rich information from the cortext, like
dependencyrelations or domain information. After we presen the basic
resourcesevaluation measures,and single algorithms, we will descrike the
top-performing systemsfor English in the di erent Senseal editions. Other
approathesand tasksthat arerelatedin somemannerto our work (from Sen-
sewal or not) will be descrited in the \related work" sectionsof the di erent
chapters. We will briey mertion herethe works coveredin other chapters:

Fourth chapter: This chapter, involving the baselinesetting of the
dissertation, will introduce experimerts by other researth groups on
the following subjects: local vs topical features, learning curves, and
performanceon an all-words corpus.

Fifth chapter: This chapter is dewted to WSD literature that re-
lies on a context represemation model that goesbeyond the classicset
of features. Works that usesynactic dependenciesselectionalprefer-
ences,or domain information will be analyzed.

Sixth chapter: An inherert problem of WSD is the lack of tagged
examplesper sense. This chapter reviseswork that try to obtain the
most of sparsefeatures by meansof di erent techniquesto smooth
probabilities. Architecturesthat useconbinations of singlealgorithms
by voting are alsopreserted here.

Seventh chapter: In this chapter, researb on ways to alleviate the
knowledge acquisition bottlenedk will be presemed. Works on auto-
matic acquisition of tagged examples,active learning, and bootstrap-
ping are included in this section. As this line of investigation aims at
using the minimal human supervision, other unsupervised works with
successfuperformancein the Senseal competition are introduced.

Eighth chapter. This chapter is dedicated to studies on training
and testing in di erent corpora. Here we will seetuning methods to
overcomethe usual decreasan performance,and also ways to adapt
the sensenvertory to the domain of the text.
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1.2 Lexicadatabaseanddictionaies

In this sectionwe will introducethe main lexical repositoriesthat have been
usedin the Senseal editionsto provide the sensanvertories for English and
Basque. Theseresourceshave beenusedfor our experimerts throughout the
dissertation.

WordNet lexicaldatabase

WordNet (Fellbaum, 1998)is a lexical databasedeweloped at Princeton Uni-
versity3. This semaric network is connectedwith paradigmatic relations,
sud assynorymy, hyperorymy, antonymy, and ertailment. All English open-
classwords are included in this resource. The conceptsare represeted by
synsets which store the words that are synorymous in someconext, e.g.
f bank, cant, camker g* .The main relation that structures this databaseis
hyperonymy, which gives a hierarchical organization to WordNet for verbs
and nouns (adjectivesand adverbs are organizeddi erently).

WordNet is widely usedin NLP researt, specially for WSD. The sense
distinctions in WordNet have becomea commonplacgor WSD researb since
they were adoptedin the Senseal-2 competition; although the senseinven-
tory hasbeencriticized for its ne-grainedness,specially for verbs.

There have been di erent versions of WordNet during the years, and
mappingsbetweenversions(Daude et al., 2000)have beendewelopedin order
to use di erent resources(sud as hand-taggedcorpora and WordNets in
other languages).The current version(August, 2004)is 2.0. Tablell.1 shavs
the corpora used for WSD that have beentagged with di erent WordNet
versions. Thesecorpora will be descriked in detail in sectionll.3.

As we mertioned in the introduction, WordNets for di erent languages
have beendewloped and linked to the original Princeton WordNet. Many
languageshave adopted the WordNet senseinventory to organize Senseal
tasks, and therefore hand-taggeddata has been built for other languages,
keepingthe connectionto English. The linking of WordNets o ers interest-
ing prospects, making possibleto experimert with multilingual information,
as di erent projects have shavn (Atserias et al., 2004;Vossen,1998). The

3The original WordNet is sometimesreferred as \Princeton WordNet", to distinguish
it from other extensionsof this approad.
4The synsetsare usually represerted by the word list between brackets.
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Corpus WorQNet
version

DSO 1.5 (Pre)
Semcor 1.6
Sensewl-2 all-words 1.7 (Pre)
Sensewul-2 lexical-sample 1.7 (Pre)
Sensewl-3 all-words 171
Sensewl-3 lexical-sample (except verbs) | 1.7.1

Tablell.1: Publicly available hand-taggedcorpora and WordNet versionsfor
English. (Pre) indicatesthat a preliminary version of WordNet was utilized
at the momert of tagging.

BasqueWordNet® is oneof the resourceseingbuilt and connectedto Prince-
ton WordNet (version1.6) . This resourcewasusedassensdnventory for the
Basquelexical-sampletask in Senseal-3 (cf. sectionll.3). Someof the words
chosenfor Basqueweretranslations of the wordsin the Englishlexical-sample
task.

HECTORIlexicaldatabase

HECTOR (Atkins, 1993) is a researt project for the dewlopmen of a
databaselinked to a dictionary and a hand-taggedcorpus. The dictionary
ertries werebuilt by lexicographersn a corpus-driven approad. The results
for a sampleof words were usedin the rst Senseal edition. A pilot of the
British National Corpus® (BNC), comprising17 million words was chosento
retrieve the examplesto tag.

Euslal HiztegiaBasquedictionay

Euslal Hiztegia (Sarasola,1996)was chosenfor the rst edition of the Sense-
val Basquetask (which washeldin Senseal-2). At the time, this monolingual

dictionary was the one available in MRD form for Basque. The dictionary

has 30,715ertries and 41,699main senses.

>The BasqueWordNet is available at http://ixa3.si.eh u.es/wei3.html
6http://www.natcorp.o x.ac.uk
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1.3 Capora

This section is dewted to the main sourcesof hand-tagged corpora that

are usedto build supervised WSD systems. We will introduce widely-used
resourcesthat are available for researb. For many years, these resources
were limited to a few projects for English (see Semcorand DSO below).

Howe\er, in recen yearsthe Senseal initiativ e hasmadea qualitativ e jump,

providing hand-taggeddata for di erent languagesand tasks.

Semco capus

Semcor(Miller et al., 1993) consistson a subsetof the Brown Corpus (BC)
plus the novel The Red Badge of Courage It cortains a number of texts
comprisingabout 200,000nvords whereall content words have beenmanually
taggedwith sensedrom WordNet 1.6 . It has beenproducedby the same
team that created WordNet. Semcorhas beencited as having scarcedata
to train supervisedlearning algorithms (Miller et al., 1994). More details on
this corpuscan be found in the experimerts performedin chapters|ll and
IV, orin (Francis and Kucera, 1982).

DSOcapus

The DefenseScienceOrganization (DSO) corpuswasdi erently designedNg
and Lee, 1996). 191 polysemouswords (nouns and verbs) of high frequency
were selectedfrom the Wall Street Journal (WSJ) and Brown Corpus (BC).
A total of 192,8000ccurrencesof thesewords weretaggedwith WordNet 1.5
sense§ more than 1,000instancesper word in average. The examplesfrom
the BC comprise78,0800ccurrencesof word sensesand the examplesfrom
the WSJ consiston 114,794occurrences.

It is important to note that the BC is balanced,and the texts are clas-
si ed accordingto someprede ned categories(the completelist is shovn in
table 11.2). The BC manual (Francis and Kucera, 1964) doesnot detail the
criteria followed to setthe categories:

The samplesrepresent a wide range of styles and varieties of
prose... The list of main categories and their suldivisions was

A previous version of WordNet 1.5 was usedat the momert of tagging, and there are
slight di erences with the nal 1.5 version.
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Informativ e prose
A. Press: Reportage
B. Press: Editorial
C. Press: Reviews (theater, books, music, dance)
D. Religion
E. Skills and Hobbies
F.
G.
H.
l.

Popular Lore

Belles Lettres, Biography, Memoirs, etc.
Miscellaneous

Learned

Imaginativ e prose
J. General Fiction
K. Mystery and Detective Fiction
L. ScienceFiction
M. Advenrture and Western Fiction
N. Romanceand Love Story
O. Humor

Table 11.2: List of categoriesof texts from the Brown Corpus, divided into
informative prose(top) and imaginative prose(bottom).

drawn up at a conference held at Brown University in February
1963.

Regardingthe WSJ corpus, all the texts comefrom pressarticles. More
details on DSO can be found in the experimerts in chapterslil, 1V, and VI 1.

Senseval-Englishlexical-sampleapus

This corpus(Kilgarri and Rosenzweig, 2000)consistson 8,512test instances
and 13,276training instancesfor 35 words (nouns, verbs, and adjectives).
The instancesare taggedwith HECTOR senseqcf. sectionll.2), and their

poliseny rangesfrom 2 to 15senses.The examplesare extracted from a pilot

of the BNC. The list of words and the number of testing examplesper word

can be seenin the appendix (cf. table B.1).

Senseval-Englishlexical-sampleapus

This corpus(Kilgarri, 2001)consistson 73 target words (nouns, verbs,and
adjectives), with 4,328testing instances,and 8,611training instances. The
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examplescomefrom the BNC (mostly), and from the WSJ. The chosensense
invertory was a previous version of WordNet 1.7 (1.7 pre-release) specially

distributed for this competition. The completelist of words is given in the

appendix (cf. table B.2). A peculiarity of this hand-taggedcorpusis that

the examplesfor a giventarget word include multiw ord sensesphrasalverbs,
and proper nouns. In order to processthese caseswe can include them as
regular sense{taggedexamples,we canremove them, or we cantry to detect
them by pre-processing(cf. sectionll1.3.2).

Senseval-Englishall-words carpus

The test data for this task (Palmeret al., 2001)consistson 5,000words of text
from three WSJ articles represeting di erent domainsfrom the Penn Tree-
Bank I1. The sensdnventory usedfor taggingis the WordNet 1.7 pre-release.
All cortent words are sense-taggedncluding multi-word constructions. Ex-
perimerts on this corpora are descriked in chapter I11.

Senseval-Basquelexical-samplearpus

The completecorpus (Agirre et al., 2001) consistson 5,284hand-taggedoc-
currencesof 40 words (nouns, verbs, and adjectives), from which 2/3 were
separatedfor training and the rest for evaluation. The senseinventory was
obtained from Euskal Hiztegia (cf. sectionll.2). The instanceshave been
extracted from two corpora: a balancedcorpus, and articles from the news-
paper Egunkaria Someinstancesare tagged with multiwords. The list of
words, with their frequencyand poliseny degree canbe seenin the appendix
(cf. table B.3). Experimerts on this data are descriked in chapter I11.

Senseval-Englishlexical-sampleapus

This corpus(Mihalceaet al., 2004)wasbuilt relying onthe OpenMind Word
Expert system(Mihalcea and Chklovski, 2003). Senseaggedexampleswere
collectedfrom web usersby meansof this application. The sourcecorpora
was BNC, although early versionsincluded data from the Penn TreeBank
corpus, the Los AngelesTimes collection, and Open Mind Common Sense
As sensenvenory WordNet 1.7.1. was chosenfor nounsand adjectives,and
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the dictionary Wordsmytt for verbs. The main reasonto rely in another
inventory for verbs was the ne-grainednessof WordNet. The results for
verbs are usually poor, and they wanted to test the e ect of using a coarser
invertory.

57 words (nouns, verbs, and adjectives) were taggedin 7,860 instances
for training and 3,944 for testing (seelist in the appendix, table B.4). Ex-
perimerts on this corpusare descriked in chapter V.

Senseval-Englishall-words carpus

As in Senseal-2, the test data for this task consistedon 5,000words of text
(Snyder and Palmer, 2004). The data was extracted from two WSJ articles
and one excerpt from the BC. The texts represen three di erent domains:
editorial, news story, and ction. Overall, 2,212 words were tagged with
WordNet 1.7.1. senseg2,081if we do not include multiw ords).

Senseval-Basquelexical-sampleapus

For this corpus(Agirre et al., 2004),40 words (nouns, verbs, and adjectives)
weretaggedin 7,362instances(2/3 weredistributed for training, the rest for
ewvaluation). The chosensensenvertory wasthe BasqueWordNet, which is
linked to the version 1.6 of Princeton WordNet (cf. sectionll.2). Examples
taggedwith multiword sensesvere included. Togetherwith this data, they
alsodistribute 62,498untaggedexamplesof the 40 words, obtained from the
Internet.

The hand-tagged corpora is extracted from three sources: a balanced
corpus,the newspagr Egunkaria, and the Internet. The corpusdistribution
includeslinguistic processingsud aslemmatization, PoStagging, and iden-
ti cation of casemarkers (Basqueis an agglutinative language). Instances
that are tagged with multiwords are kept. The completelist of words and
their frequenciescan be seenin the appendix (cf. table B.5). Experimerts
on this corpusare descriked in chapter V.

8http://www.w ordsmyth.net/
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1.4 Leaningalgaithms

We will presert heredi erent methods that are usedwidely for supervised
WSD, aloneor in conmbination. Most of our experimerts are performedusing
the rst algorithm (DecisionLists), but the other methodswill alsobe applied
in di erent parts of this dissertation.

As we menioned in sectionl.2, in order to represenh the cortext of the
word occurrencewe want to disanmbiguate, we extract features(f ) from the
exampleusingdi erent tools. Then, the ML methods below return a weight
for ead sensg(weight(sk)), and the sensewith maximum weigh is selected.

11.4.1 Most FrequentSensebaseling MFS)

This simple baselinemethod is frequerly applied in WSD literature. It
consistson courting the number of examplesfor ead sensen training data,
and assigningthe most frequent to all the examplesin testing. In caseof
ties, the algorithm choosesat random. Despiteits simplicity, this approad is
di cult to beat for all-words systemsthat do not rely on hand-taggeddata.

11.4.2 DecisionLists (DL)

A DecisionList consistsof a set of orderedrules of the form (feature-value,
senseweight). In this setting, the DecisionLists algorithm works asfollows:
the training data is usedto estimate the features, which are weighted with
a log-likelihood measure(Yarowsky, 1995b) indicating the likelihood of a
particular sensegiven a particular feature value. The list of all rules is
sorted by decreasingvaluesof this weigh. When testing new examples,the
decisionlist is chedked, and the feature with highestweight that matchesthe
test exampleselectsthe winning word sense.

The original formula (Yarowsky, 1995b)canbe adaptedin orderto handle
classi cation problemswith more tan two classes.n this case,the weigh of
senses, when feature f occursin the cortext is computed as the logarithm
of the probability of sensesy given feature f divided by the sum of the
probabilities of the other sensegyiven feature f . That is, the weight of sy is
obtained by the following formula:

weight(sx) = argmax Iog(PM) (1.1)
f sk P(siif)
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Theseprobabilities can be estimated using the maximum likelihood esti-
mate, and somekind of smaothing so asto avoid the problem of O courts.
Di erent approadesfor smoothing have beenexploredin chapter V. As de-
fault, avery simplesolution hasbeenadopted, which consistsof replacingthe
denominator by 0.1 when the frequencyis zero. This value was determined
empirically in previous experimerts.

In somecases,for a given feature, there is only one occurrence,or the
weight for all the sensesds lower than zero. Another decisionif whether to
include these featuresin the decisionlist or not. We call this parameter
pruning, and in most of the experimerts we will apply pruning, that is, we
will discardthesefeatures. In the experimerts wherewe needhigher coverage
we will not usepruning, and we will indicate it explicitly.

11.4.3 NaiveBayes(NB)

The Naive Bayes(NB) method is basedon the conditional probability of ead
senses, given the featuresf; in the context. It assumesndependenceof the
features,which is not real, but it hasbeenshavn to perform well in diverse
settings (Mooney, 1996;Ng, 1997;Leacak et al., 1998). The sensesy that
maximizesthe probability in formula 11.2 is returned by the algorithm.

weight(si) = P(s) ™ P(fiis) (1.2)

The valuesP (sx) and P (fijsx) are estimated from training data, using
relative frequencies. It requiressmaothing in order to prevert the formula
from returning zerobecauseof a singlefeature. A method that hasbeenused
in somepreviouswork with this algorithm (Ng, 1997;Escuderoet al., 2000b)
is to replacezerocourts with P(sc)=N, whereN is the number of examples
in training. We usedthis method as default smoothing. This algorithm has
beenapplied in sectionlV.9 with semaric features,and in the experimerts
on smaothing in chapter V.

11.4.4 Vecta SpaceModel (VSM)

For the Vector SpaceModel (VSM) method, we represen ead occurrence
cortext asa vector, whereead featurewill have a 1 or 0 valueto indicate the
occurrence/absencef the feature. For ead sensein training, one certroid
vector is obtained (Cs, ). Thesecertroids are comparedwith the vectorsthat



1.4 Learning algorithms 29

represen testing examples(f”), by meansof the cosinesimilarity function
(formula 11.3). The closestcertroid assignsits senseto the testing example.
No smoothing is required to apply this algorithm, but it is possibleto use
smoothed valuesinstead of 1sand Os, aswe will seein chapter V.

weight(sy) = cogCs, ;) = Jgkk”‘;] (11.3)

11.4.5 Support Vecta MachinegSVM)

RegardingSupport Vector Machines(SVM), we utilized SVM-Light, a public
distribution of SVM by Joadtims (1999), in order to test the SVM method
(Vapnik, 1995) in our setting. The basic idea of the algorithm is to use
the training data to learn a linear hyperplane that separatesthe positive
examplesfrom the negative examples. The location of this hyperplane in
the spaceis the point wherethe distanceto the closestpositive and negative
examples(the margin) is maximum. In somecases,it is not possibleto
obtain an hyperplanethat dividesthe spacelinearly, or it is worthy to allow
someerrors in training data to construct a more e cient hyperplane. This
can be achieved with the \soft margin” variant of the method, which permits
atrade-o betweentraining errorsand the maximization of the margin. The
\soft margin" variant requiresthe estimation of a parameter(denotedasC).
We estimatedthe C usinga greedyprocessn cross-alidation on the training
data. The weight for ead senseis given by the distanceto the hyperplane
that supports the classesthat is, the senses, versusthe rest of senseg\one
vs all" approad). This method hasbeenapplied in chapter V.

11.4.6 AdaBast (AB)

AdaBoost (AB) is a generalmethod for obtaining a highly accurateclassi -
cation rule by linearly combining many weak classi ers, ead of which may
be only moderately accurate (Freund and Scapire, 1997). For our experi-
merts, a generalizedversion of the AB algorithm has beenused, (Schapire
and Singer, 1999), which works with very simple domain partitioning weak
hypothesegdecisionstumps) with con dencerated predictions. This partic-
ular boosting algorithm is able to work e cien tly in very high dimensional
feature spaces,and has been applied, with signi cant successto a num-
ber of NLP disambiguation tasks, including WSD (Escuderoet al., 2000a).
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Regarding parametrization, the smaoothing parameter has been set to the
default value (Schapire and Singer, 1999),and AB hasbeenrun for a xed

number of rounds (200) for eat word. No optimization of theseparameters
has beendone at word level. When testing, the sensewith the highest pre-
diction is assigned.This method hasbeenapplied with syntactic featuresin

chapter IV.

1.5 Evaluation

In order to evaluate how well do the systemsperform, hand-taggedcorpora
is used as gold standard, and di erent measuresare calculated comparing
the answers of the systemto this gold standard. Depending on the corpora
we use,two approadeshave beentaken for evaluation.

Onetraining/test partition: onepart of the corpusis usedfor learning,
and the rest for evaluation. This approad is applied with the Senseal
datasets,and in cross-corpra tagging experimens.

Cross-alidation: the corporais split in N parts of similar size,and this
processis repeated for ead of the piecesin turn: the chosenpart is
usedas gold-standard, and the remaining (N-1) parts for training the
system. The nal result is the averageof the N executions. We can
partition the corpora randomly, or in a stratied way, that is, trying
to keepthe sameproportion of word sensesn ead of the folds. Cross-
validation is usedwhenworking on Semcoror DSO.

[1.5.1 Measures

In order to measurethe goodnessof WSD methods, we use the following
measures: precision, recall, coverage, and F1 (harmonic average between
precision and recall), all ranging from 0 to 1. Given N (number of test
instances),A (number of instanceswhich have beentagged),and C (number
of instanceswhich have beencorrectly tagged):

- precision = C=A
- recal = C=N

- cowerage= A=N
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- F1= (2 precision recal)=(precision+ recal) = (2 C)=(A+ N)

When multiple sensesre chosen,we usea modi ed measureof precision,
equivalent to choosingat randomin ties. Instead of courting 1 whenany of
the winning sensess correct, we court only a fraction. That is, we substitute
C with C' in the above formula, where C' is computed as follows:

1 if instancei correct

X
0 H B\ —
C'= C(i) where C(i) = 0 otherwise

i2test instances

The results will be given in percertage points. Except for the initial
experiments, the results will be roundedto the rst decimal number, to be
able to di erentiate when di erences are small. In the initial experimerts
only integer valuesare provided.

In the Senseal competition a similar evaluation sthemais applied. There
are slight di erences when there are multiple correct labels and multiple
answvers. The Senseal scoringsoftware incorporatessomeideasfrom (Resnik
and Yarowsky, 1997).

Finally, in most of the tables, the results averagedby PoS or overall are
shavn. In order to obtain these values, the number of examplesfor eah
word is always usedto micro-averagethe results. For example, if we have
only two adjectivesin a word-set (e.g. all (200 occurrences90% precision)
and long (100 occurrences,60% precision)), in order to obtain the average
precisionfor adjectives, we proceedas follows:

prec(all) freqall) + prec{long) freqlong)
freqall) + f reqlong)

90 200+ 60 100
B 200 + 100

avg: precisionfor ad s: =

= 800

[1.5.2 Signi cancetests

When comparing the performanceof two algorithms, there are statistical
teststhat help usto know whetherthe precisionor recall di erence we obsene
is signi cant. A comparisonof these methods can be found in (Dietterich,
1998). We will apply two of thesetests in someof our experiments:
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McNemar'stest: it is employjed whenthere is only one executionof the
algorithm, that is, when the training and testing data do not change.
The method is basedon a 2 test for goodness-of-t that compares
the distribution of correct/incorrect courts expected under the null
hypothesis(sameerror rate for both algorithms) to the obsened couns.

Cross-walidated paired Studert t test: it is applied whenthe ewvaluation
is basedon cross-alidation. In this casethe null hypothesisis that the
di erence in the error of ead classi er for ead partition is drawn inde-
pendertly from a normal distribution. The Studert's t statistic givesus
the value of the actual distribution and the threshold to reject/accept
the null hypothesis.

1.6 WSDsystemsn Senseval-1

The rst edition of Senseal took place in 1998 at HerstmonceuxCastle,
England (Kilgarri, 1998). For the rst time, the researb comnunity made
ajoint e ort to de ne the procedureand methodology for the evaluation of
sud a cortroversialtask asWSD. The goalwasto follow the exampleof other
successfutompetitiv e evaluations, like MUC (MessageUnderstanding Con-
ference)or TREC (Text Retrieval Conference).In this rst edition, extensiwe
discussionwas carried out on issuesasthe lexicon, the tagging methodology;
the evaluation procedure,or eventhe appropriatenessof de ning WSD in the
way it was. Finally, three tasks were arrangedthat consistedin tagging a
prede ned set of words (lexical-sample)for three languages:English, French,
and Italian. A total of 25 systemsfrom 23 researb groups madeit to the
nal scedule.

The systemsthat competed in Senseal-1 relied on ML methods (using
the available training data to extract features),or in lexical resourcesud as
WordNet. Prior to the event, there weretwo typesof systemsbeingdeweloped
for WSD (supervisedand unsupervised), and it was not clear which would
achieve better performance. During the competition, many combined ap-
proacheswere presetted, relying both in hand-taggedcorpora and other lex-
ical resourcesjooking for robustnessrather than \purit y". Howeer, clearly
the top-scoring systemswere those relying on hand-taggeddata for training
their models.

Focusingon the English lexical-sampletask, which had the highest par-
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ticipation, the results of the best systemsrangedbetween74%-78%recall for

ne-grained scoring,while a baselinemethod basedon (Lesk, 1986)adcieved
69% recall. We will descrike briey this baselinemethod, and the three
top-scoring systemsfor this task®.

Lesk-copus(Lesk,1986)

Method basedon the overlapping betweenthe target cortext, and the de -
nitions plus the taggedexamplesfor ead sense.Although simple, the useof
training examplesto construct the model makesit di cult to beat, specially
for unsupervisedapproades.

JHU (Yarowsky, 2000)

This system,which had the best scoreafter re-submissionwith 78.1%recall,
wasa supervisedalgorithm basedon hierarchiesof DLs. The method tries to
take advantage of the conditional branching at the top levels of the Decision
Tree approad), while avoiding the data fragmertation problem. It relieson
a rich set of features(collocational, morphological,and syrtactic) to classify
the examples.It alsoass&iatesweights to the di erent typesof features.

Durham(Hawkinsand Nettleton, 2000)

The systemcalled\Durham" wasthe best scoringafter the rst submission
of systems,attaining 77.1%recall. It consistedon a hybrid approad rely-
ing on three types of knowledge: stochastic (frequency of sensesn training

data), rule-based(clue words from the training cortext), and sub-synbolic
(contextual similarity betweenconcepts). One of the main drawbadks of this

systemwasthe requiremen of hand-work in orderto obtain clue words from

the cortext of the target words.

Tilburg (Veenstraet al., 2000)

This team applied a Memory BasedLearning (MBL) method to retrieve the
closestmatch to the test examplefrom the training instances;then the sense
of the training instance is assigned. This method achieved 75.1% recall.

9There was the option to resubmitting the results after correcting bugs, and therefore
there were2 o cial scores.In any case,the three best systemsremained the same.
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This ML approad does not require to perform a generalizationstep with
the hand-taggeddata. In this case,automatic feature-weighting was applied
in the similarity metric, and a word expert was built for ead target word
in Sense&l. The word experts were constructed by exhaustive seart on
training data by 10 fold cross-alidation, attending to thesefactors:

Variant of the learning algorithm
Parameter setting
Feature construction setting

1.7 WSDsystemsn Senseval-2

The secondedition of Senseal (Edmonds and Cotton, 2001) was held in
Toulouse (France), in July 2001. It was organized under the auspicesof
ACL-SIGLEX, and the workshoptook placejust beforethe main ACL-2001
Conference.For Senseal-2, there werethree typesof tasks on 12 languages:

Lexical-sampletask: a prede ned set of words is chosen,and only in-
stancescorrespnding to thosewords aretagged. Most of the languages
chosethis approad in order to build their tasks.

All-wordstask: all content wordsin a sampleof running text aretagged.

Translation: this is a kind of lexical-sampletask wherethe sensesare
de ned by meansof translations to another language. This approad
was only applied for Japanese.

A total of 93 systemsfrom 34 groups participated in the di erent tasks.
The majority competed in the English lexical-sampleand all-words tasks.
As we saw in sectionll.3, the WordNet 1.7 (pre-release)sensenverntory was
chosenfor English.

In the English lexical-samplethe best system (JHU) scored64.294°, for
51.2%of the Lesk baseline(described below). Table 11.3 shows the results
for the lexical-sampletask. The position, precision, recall, and coverage of
eath of the 20 competing systemsis given. The organization implemerted
somebaselinesystemsasreference.Thesearethe morerepresetativ e: Lesk-
corpus (51.2%recall, seeprevious section for description), MFS (47.6%re-
call), and Random (14.1%recall).

0There wasthe option of resubmittion to correct somebugs. This decisionwasadopted
becauseof the tight schedule of the process.
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P osition Precision Recall Coverage | System

1 64.2 64.2 100.0 JHU (R)

2 63.8 63.8 100.0 SMUIs

3 62.9 62.9 100.0 KUNLP

4 61.7 61.7 100.0 Stanford - CS224N
5 61.3 61.3 100.0 Sinequa-LIA - SCT
6 59.4 59.4 100.0 TALP

7 57.1 57.1 100.0 Duluth 3

8 56.8 56.8 99.9 UMD - SST

9 57.3 56.4 98.3 BCU - ehu-dlist-all
10 55.4 55.4 100.0 Duluth 5

11 55.0 55.0 100.0 Duluth C

12 54.2 54.2 100.0 Duluth 4

13 53.9 53.9 100.0 Duluth 2

14 53.4 53.4 100.0 Duluth 1

15 52.3 52.3 100.0 Duluth A

16 50.8 50.8 99.9 Duluth B

17 49.8 49.8 99.9 UNED - LS-T

18 42.1 41.1 97.7 Alican te

19 66.5 24.9 37.4 IRST

20 82.9 233 28.0 BCU - ehu-dlist-b est

Table11.3: Table of the supervisedsystemsin the Senseal-2 English lexical-
sampletask sorted by recall (version 1.5, published 28 Sep. 2001). Fine-
grained scoring. R: resubmitted system.

The results of this table show that the performanceis much lower than
in Senseal-1, wherethe best systemsscoredin a 75%-78%recall range,and
the Lesk baselinereaded 69%recall. The main reasonfor this seemso be
the ne-grainednessof the WordNet sensesspecially in the caseof verbs. As
expected, the supervised systemswere those performing best. There were
someteams that introduced methods from the ML literature for the rst
time to WSD: AdaBoost (TALP), SVM (UMD-SST), or Maximum Entropy
(Alicante). Howewer, the top-scoresin this task were for supervisedsystems
that relied on the following characteristics:

Voting of heterogeneousystems(JHU, Stanford-CS224).

Rich features: syntactic relations (JHU), NamedEntities (SMU), Word-
Net Semartic Codes(LIA-Sinequa), and WN Domains(TALP).

Feature selection(SMU) and weighting (JHU).

Automatically extendedtraining-set (SMU).
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JHU and SMUIs (which also participated in all-words) will be descriked
in this sectionafter this introduction to Senseal-2. Our own systemBCU-
ehu-dlist-all*! is presened in sectionll1.5.8. The unsupervisedsystemsthat
took part in this task aredescritedin sectionVI.6.2, wherewe comparethem
to our unsupervised methods. The Senseal-2 lexical sampledata has been
usedto test seeral WSD methods sinceit wasreleasedwe will preseh some
of the most successfu(attending to performance)in sectionV.2.

Regardingthe English all-words task, the results are shown in table 11.4.
The top-scoringmethods in the all-words task were also supervisedsystems,
which relied mostly on Semcorfor training (SMUaw usedalso WordNet ex-
amplesand an automatically generatedcorpus). We can seethat the best
system (SMUaw) scored69%, with a gain of more than 5% over the 2nd
system (Ave-Antwerp). A baselinethat would assignthe 1st sensein WN
would score57%. An indicator of the di cult y of this task is that only 4 out
of 21 systemswere able to overcomethe 1st sensebaseline.We will descrike
the top-3 from the list in the following description of Senseal-2 systems.
Our own system (BCU-ehu-dlist-all) is presernied in sectionl11.5.8.

JHU (Yarowskyet al., 2001)

This wasthe bestscoringsystemin the lexical-sampletask with 64.2%recall;
with an architecture consistingon voting-basedclassi er combination. A rich
set of featureswas extracted from the context, including syrtactic relations
(object, subject, noun/adjective modi er, ...) extracted by meansof heuristic
patterns and regular expressionsover the PoS tags around the target word.
Four algorithms wereincluded in the voting ensenble: vector cosinesim-
ilarity (similar to the VSM descriked in section 11.4.4), Bayesian models
(word-basedand lemma-based),and DLs. Dierent voting shemeswere
testedin cross-alidation beforesubmission:probability interpolation, rank-
averaged,equalweight, performance-veighted, and thresholded.

SMUIsand SMUawv (Mihalceaand Moldovan,2001)

These systemswere applied to the lexical-sampletask (ranking 2nd, with
63.8%recall), and the all-words task (winner, with 69%recall). The archi-

we also submitted another system (BCU-ehu-dlist-b est), which relied on a preci-
sion/coveragethreshold, in a fashion similar to the methods we will seein sectionV.7.
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P osition Precision Recall Coverage | System

1 69.0 69.0 100.0 SMUaw

2 63.6 63.6 100.0 CNTS-An twerp

3 61.8 61.8 100.0 Sinequa-LIA - HMM

4 57.5 56.9 98.9 UNED - AW-U2

5 55.6 55.0 98.9 UNED - AW-U

6 47.5 45.4 95.5 UCLA - gchao2

7 47.4 45.3 95.5 UCLA - gchao3

8 41.6 45.1 108.5 CL Research - DIMAP

9 50.0 44.9 89.7 UCLA - gchao

10 36.0 36.0 99.9 Univ ersiti Sains Malaysia 2
11 74.8 35.7 47.7 IRST

12 34.5 33.8 97.8 Univ ersiti Sains Malaysia 1
13 33.6 33.6 99.9 Univ ersiti Sains Malaysia 3
14 57.2 29.1 50.7 BCU - ehu-dlist-all

15 44.0 20.0 453 She eld

16 56.6 16.9 29.8 Sussex- sel-ospd

17 54.5 16.9 31.0 Sussex- sel-ospd-ana

18 59.8 14.0 23.3 Sussex- sel

19 32.8 03.8 11.6 1T 2

20 29.4 03.4 11.6 1T 3

21 28.7 03.3 11.6 1T 1

Table I1.4: Table of the supervised systemsin the Senseal-2 English all-
words task sorted by recall (version 1.5, published 28 Sep. 2001). Fine-
grained scoring.

tecture has two main componerts: Instance BasedLearning (IBL) 2, when
there is speci ¢ training data for the target words (lexical-sampletask), and
pattern learning when there are few examples(all-words task). The system
hasa pre-processingphase, whereNamedEntities (NE) and Collocationsare
detected.

For pattern learning, the examplesare obtained from Semcor,WN exam-
ples, and GenCor (automatically generatedcorpora, descrited in Mihalcea
(2002)). The patterns are extracted from the local cortext of words, and
follow the rules of regular expressionswhere ead token is represeted by
its baseform, its PoS, its sense(when available), and its hypernym (when
available). Wildcards (*) are usedwhenthe elemerts are underspeci ed.

IBL follows the idea of (Veenstraet al., 2000), which participated in
Sensesl-1 with the \Tilburg" system. In this case,the TiMBL software
(Daelemanset al., 2002) is used with information-gain feature weighing.
The novelty of this work is that they perform feature selection per eah

12 Also noun as Memory BasedLearning (MBL).



38 State of the art: resources, systems, and evaluation

word, using cross-alidation in training data. Only the featuresthat help to
increaseperformanceare kept for ead word.

For the lexical-sampletask, only IBL was used. Regardingthe all-words
system, the algorithm followed these steps sequetially until a sensewas
assigned:

1. Apply IBL whenthere are enoughexamplesfor the word.
2. Apply pattern learning.
3. Propagatesenseso closeoccurrencef the samewordsin the cortext.

4. Assignthe 1st sensen WordNet.

Ave-Antverp (Hosteet al., 2001)

The Antwerp all-words system relies on Semcorto build word-experts for
eat word with more than 10 instancesfor training. They perform 10 fold
cross-alidation at 2 lewvels, in order to optimize the parametersof ead of
their three classi ers,and alsoto optimize the voting scheme. Their classi ers
consiston 2 versionsof their MBL method (TiMBL), trained ondi erent sets
of features (local and topical), and a rule learning algorithm called Ripper
(Cohen,1995). Their method scoredsecondn the all-wordstask, with 63.6%
precisionand recall.

LIA-SinequgCrestanet al., 2001)

This team participated both in the lexical-sampletask (ranking in the top-5),

and in the all-wordstask (ranking 3rd). Their all-words systemwasbasedon
Hidden Markov Models (HMM), trained on Semcor.For the lexical-sample,
they relied on Binary DecisionTreestrained on the available examples(this

wasalsoappliedfor exampledn the all-wordstask that werealsoin the lexical

sample). The cortexts were represeted by the lemmasand the WordNet
sematic classesn xed positionsaround the target word.

1.8 WSDsystemsn Senseval-3

The third edition of Senseal (Mihalcea and Edmonds, 2004)took placein
Barcelona,on July 25-26,2004,in conjunction with the meetingof the Asso-
ciation for Computational Linguistics (ACL). Fourteentaskswerepreserted,
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System Team Precision | Recall
htsa3 Univ ersity of Bucharest 72.9 72.9
IRST-Kernels ITC-IRST 72.6 72.6
nusels National Univ ersity of Singapore | 72.4 72.4
htsa4 Univ ersity of Bucharest 72.4 72.4
BCU comb Basque Country Univ ersity 72.3 72.3
htsal Univ ersity of Bucharest 72.2 72.2
rlsc-comb Univ ersity of Bucharest 72.2 72.2
htsa2 Univ ersity of Bucharest 72.1 721
BCU english Basque Country Univ ersity 72.0 72.0
rlsc-lin Univ ersity of Bucharest 71.8 71.8
HLTC HKUST all HKUST 71.4 71.4
TALP U.P. Catalunya 71.3 71.3
MC-WSD Brown Univ ersity 71.1 71.1
HLTC HKUST all2 | HKUST 70.9 70.9

Table I1.5: Top-14 supervisedsystemsin the Senseal-3 lexical-sampletask
( ne-grained scoring). For ead system,the submitting researb group and
the precision/recall gures are given.

and 55teamscompeted on them, for a total of morethan 160systemsubmis-
sions. There weretypical WSD tasks (lexical-sampleand all-words) for seven
languagesand new tasks were included, involving iderti cation of semaric
roles, logic forms, multilingual annotations, and subcategorization acquisi-
tion. We will focus, as before, on the English lexical-sampleand all-words
tasks's.

The English lexical-sampletask had the highest participation, asusual.
27 teams submitted 46 systemsto this task, most of them supervised. The
corpuswas built with the collaboration of web users,asis descrited in sec-
tion 11.3. WordNet 1.7.1 (for nouns and adjectives) and WordSmnyth (for
verbs) were usedas sensanvertories. In the o cial results, 37 systemswere
consideredsupervised, and only 9 were unsupervised; but aswe mertioned
earlier in this chapter, this division is cortroversial. For instance, it seems
clear that the winner in the unsupervised category relied on hand-tagged
examplesto construct its sense-mdels. Moreover, the secondranked team
adknowledgedthat their system required a few tagged examplesfor their
clustering method. In any case,the performanceof the top-14 supervised
systemsis givenin table 11.3'4. The table shavs the nameof the systemand
the submitting team, together with the precisionand recall.

The results of the top 14 systems,from 8 di erent teams, illustrate the

13The systemsand results in the Basquelexical-sampletask are preseried in sectionV.8
14Ched (Mihalcea et al., 2004) for complete table of supervised methods.
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System Precision | Recall
GAMBL-A W-S 65.1 65.1
SenselLearner-S 65.1 64.2
Koc Univ ersity-S 64.8 63.9
R2D2: English all-words-S | 62.6 62.6
Meaning-allw ords-S 62.5 62.3
Meaning-simple-S 61.1 61.0
LCCaw-S 61.4 60.6
upv-shmm-eaw-S 61.6 60.5
UJAEN-S 60.1 58.8
IRTS-DDD-00-U 58.3 58.2

Tablell.6: Top-10systemsin the Senseal-3 all-wordstask. For eat system,
the precision/recall gures are given.

small di erences in performancefor this task, where the top-9 systemsare
lessthan a point below. This suggestghat a plateau has beenreaded for
this kind of task with this kind of ML approades. The results of the best
system(72.9%recall) are way aheadof the MFS baseline(55.2%recall), and
presem a signi cant improvemen from the previous Senseal edition, which
could be due, in part, to the changein the verb sensenvertory. Attending
to the characteristicsof the top-performing systems this edition hasshovn a
predominanceof kernel-basedmethods (e.g. SVM, seesectionl1.4.5), which
have beenused by most of the top systems. For instance, the 2nd ranked
systemworks with the kernel function in order to integrate diverse knowl-
edgesources.We will descrike the top two systems(Htsa3 and ITC-IRST)

in detail below. Other approatesthat have beenadopted by seeral sys-
tems are the combination of algorithms by voting, and the use of complex
features,sudt assynactic dependenciesand domain tags. Finally, a novelty
introducedby the winning systemhasbeena post-processingdeparture from
Bayesianpriors, that we will descrike below.

Regardingthe English all-words task, 20 systemsfrom 16 di erent teams
participated on it. According to the result table preserned in (Snyder and
Palmer, 2004),7 systemswere supervisedand 9 unsupervised(the other four
are not categorized). The best systemacdhieved 65.1% precisionand recall,
while the \W ordNet rst sense"baselinewould achieve 60.9%or 62.4% (de-
pendingon the treatment of multiw ords and hyphenatedwords). The results
of the top-10 systemsare given in table I1.4. The sux (-S) in the name of
the system indicates \supervised”, and the sux (-U) indicates unsuper-
vised. Note that the top nine systemsare supervised, although the 10th
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system(IRTS-DDD-LSI-U), which is a fully-unsuperviseddomain-driven ap-
proach is closeto the other methods, and this fact is encouragingfor this kind
of approad. Furthermore, it is also worth mertioning that in this edition
there are more systemsabove the \rst sense"threshold: betweenfour and
SiX.

For the all-words task, there is no plateau, and there are signi cant dif-
ferencesin the performanceand the approadies of the top systems. We
will descrike the two best-systems(GAMBL-A W and SenseLearnerpelow.
The supervised methods rely mostly in Semcorto get hand-tagged exam-
ples; but there are seeral groupsthat incorporate other corpora like DSO,
WordNet de nitions and glossesall-words and lexical-samplecorpora from
other Senseal editions, or even the line/serve/hard corpora (Leacak et al.,
1998). Most of the participant all-words systemsinclude rich featuresin their
models, specially syntactic dependenciesand domain information.

The systemsthat rank betweenthe 4th and 6th place (R2D2, Meaning-
allwords, and Meaning-simple)correspnd to collaborative e orts of di erent
researb groups,which incorporate supervisedand unsupervisedapproades
in a voting architecture. Kernel-basedmethods and Domain-driven disam-
biguation are included in these ensenbles. Coincidertly, although the en-
senblesare di erent, they obtain similar performance.

We will now descrile the best performing systemsin the English lexical-
sampleand all-words tasks.

Htsa3 (Grozea,2004)

The winner in the lexical-sampletask was one of the six systemssubmit-
ted by the group of the University of Bucharest, with 72.9% precision and
recall. The learning method applied was Regularizedleast-squareslassi -
cation (RLSC), which is basedon kernelsand Tikhonov regularization. The
featuresthat they usedconsiston local collocations (words, lemmas,and PoS
tags), and lemmasin the context of the target word.

Htsa3 relied on a linear kernel, and they normalized its weight-values
by dividing them with the empiric frequencyof the sensesn training data.
The normalization helpsto balancethe implicit bias of RLSC, which gives
higher \a posteriori" probability to frequert senses.A new parameter ( )
is introduced in order to perform the normalization step smoothly. The
regularization parameterand the value are estimated using the Senseal-1
and Senseal-2 corpora.
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IRST-KernelgStrappaavaet al., 2004)

IRST-Kernels scoredsecondin the English lexical-sampletask, with 72.6%
recall. This systemis basedon SVM (cf. sectionll.4.5), and they usethe
kernelfunction to combine heterogeneousourcesof information. Thus, they
de ne their kernel function asthe addition of two kernels: the paradigmatic
kernel and the syntagmatic kernel, which are constructed as follows:

The syntagmatic kernel: the idea is that the similarity between two
contexts is given by the sharednumber of word sequencesThis is im-
plemerted splitting further the kernelin a \collo cation kernel" (based
on the lemmasequencesand a \P oSkernel" (basedon PoSsequences).
In order to include matchesof equivalert terms, a similarity threshold
basedon LSA is applied, and terms above the threshold are considered
equal.

The paradigmatic kernel: information about the domain of the text is
introducedby this measure.This kernelis alsothe addition of another
two: a\bag of words" kerneland an \Latent Semaric Indexing (LSI)
kernel". The secondtries to alleviate the sparsenesgroblem of the
\bag of words" kernel.

They concludethat syntagmatic and paradigmatic information are com-
plemertary, and they claim that kernelsprovide a exible way to integrate
di erent sourcesof knowledge.

GAMBL-AN (Decadtet al., 2004)

This systemwas the winner of the all-words task. They submitted a simi-
lar systemalsoto the lexical-sampletask, which scoredlower than kernel-
basedmethods. GAMBL-AW is a supervised approad that relies on ex-
tensive corpora to learn the word-experts. This corpusis obtained joining
Semcorwith all the tagged data from previous Senseal editions (all-words
and lexical-sample;training and testing), alsoincluding the training data in
Senseal-3 lexical-sample the examplesin WordNet, and the line/hard/serve
corpora. From theseexamples,they extract two typesof features: the local
cortext (including information about chunks and dependencyrelations ex-
tracted from a shallow parser), and the keywords in cortext. The keywords
are extracted per ead sensefrom two sources: WordNet sensede nitions,
and applying the method in (Ng and Lee, 1996).
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Using this information, GAMBL applies a word-expert approad with
MBL (using TiMBL) and optimization of features and parameters. They
apply a cascadedarchitecture, whereclassi cation is carried out in two steps:
rst, a keyword-basedclassi er assignsa senseto the new example; this
senseis then used as a feature for a secondclassi er, which is basedon
local featuresand makesthe nal decision. In order to construct thesetwo
classi ers, exhaustive optimization is performed with Genetic Algorithms
(GA) and heuristic optimization by meansof cross-alidation. They use
GAs to jointly optimize feature selectionand parameteroptimization. They
shaw a signi cativ e improvemert in the results due to optimization.

SenselLeaer (Mihalceaand Faruque,2004)

SenselLearneobtained the 2nd best scorein the English all-words task, with
64.2%recall. This team considersoneof their goalsto useasfewhand-tagged
data aspossible,and they rely only on Semcorand the WordNet hierarchy to
constructtheir architecture. The method appliestwo main stepssequetially,
jumping to the secondonly whenthe rst abstains:

1. Sematic LanguageModel: The examplesin Semcorare usedto learn
amodel for ead PoS (usingjointly all the words), basedon very simple
co-accurrencefeatures,which aredi erent for ead PoS. TIMBL is then
applied to the testing examples,and the model predicts the word and
senseof the test example. If the predicted word correspnds to the
example,the predicted sensds assignedotherwisethere is no answer.
The averagecoverageof this method is 85.6%.

2. Semaric Generalizationsusing Syntactic Dependenciesand WordNet:
In the learning phase, all the dependenciesin Semcorare extracted
and expandedwith the hypernyms of the nounsand verbsappearingin
them. For ead dependency-pair,positive featurevectorsare createdfor
the occurring sensesand negative vectorsfor the others. In the testing
phase, for eaty dependency-pair, feature vectors are created for all
possiblecombinations of senses.TiIMBL assignsa positive or negative
value for eat of this vectors, using the generalizationsextracted from
Semcor.Thesevaluesare usedto make the nal prediction.
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|1]. CHAPTER

Baseline WSD system: DL and basic features

1.1 Introduction

In the previouschapter we have seensomesupervisedWSD techniques,and
the state-of-the-art performancethat di erent systemscan provide. In order
to approad the main problemsof a complex phenomenalike WSD (issues
introduced in the rst chapter), we will now implemert our own baseline
disanbiguation system. The idea when constructing this systemis to use
basic resources(WordNet, publicly available corpora, well-studied feature
typesand algorithms, etc.) and apply them to our experimerts. Our goalin
this chapter is twofold:

1. Apply our basicsystemto extensive experimertation in order to shed
light into di erent aspectsof WSD.

2. Measurethe performancewe can obtain with this systemto be usedas
referencavhenwe intro duceimprovemerts, like newknowledgesources,
disanbiguation algorithms, or automatically acquired examples.

As we mertioned in the introduction chapter, the DL algorithm (c.f. sec-
tion 11.4.2) has somequalities that make it a good candidate for our basic
system:

DLs are basedon the bestsingleevidence,jn opposition to classi cation
basedon the combination of contextual evidences.Therefore, multiple
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non-independen featurescanbeincludedin the systemwithout having
to model the dependencies.

The decisionlists built for eaty word can be hand-inspected, and pro-
vide usefulinformation about the target word.

Despite its simplicity, this algorithm has performed well in di erent
Senseal editions; as single systemin Senseal-1, and as part of an
ensenble in Senseal-2.

Thus, we will useDLs aslearning method, and we will test how far can
we go with existing hand-taggedcorpora (cf. sectionll.3) like Semcor,the
DSO corpus, and the Senseal-2 data, which have beentagged with word
sensedrom WordNet. The feature-typesthat are usedfor disambiguation
will be one of the topics of this dissertation. Throughout this chapter, we
will rely on a basic set of features,similar to those widely usedfor WSD in
the literature (Yarowsky, 1994;Ng and Lee, 1996), which we will separate
into local and topical sets. The separationinto two main setswill allow usto
start analyzingthe e ect of feature-typesfor disanbiguation performance.

Now that we have presetied our baselinesystem,we will perform a pre-
cision/coverage evaluation on this setting, and we will also addresssome
guestionsthat we considerrelevant about supervisedWSD:

1. Word types: relation between poliseny/bias/frequency and perfor-
mance.

2. Featuretypes: relation betweenword typesand basicfeature types.
3. How much data is needed?Learning curve.

4. How much noisein the data can be acceptable?

5. Fine-grainedvs. coarse-graineddisanmbiguation.

6. Expected performancefor all wordsin a text.

7. Comparisonwith other methods in a real setting: Senseal-2.

8. Study performancefor another language, less studied and with less
resources:Basque.
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We expect these experimerts to give us more insight into the problem,
beforewe start focusingon the main cortributions of this work.

The remaining of this chapter is organized as follows. Following this
introduction, we will introducebrie y worksin the literature that arerelated
to the experimerts we presen in this chapter. The next section will be
dedicatedto the experimertal settingsthat we will apply in this and other
chapters of this dissertation. In the following section, we will descrite the
extraction of basicfeaturesfrom the context, for English and Basque. After
that, the main sectionwill be dewted to the experimerts that try to shed
light on the questionspresertied above, dewoting onesectionto ead. Finally,
someconclusionswill be outlined.

111.2 Relatedmvork

The experimerts that we will carry out in this chapter presen di erent as-
pects of the WSD problem, which in somecaseshave been studied in the
literature. As the experimerts cover diverseworks, we decidedto introduce
them briey here, and descrite them in more detail in the sectionscorre-
sponding to the experimerts.

Our rst referenceo the WSD literature will comewith the study of local
and topical features(cf. sectionll1.5.3), where we will compareour results
with thosereported in (Gale et al., 1993)and (Leacack et al., 1998). In order
to justify the di erent conclusionsworking on Semcoror DSO, we will refer
to the work by Ng et al. (1999). Also in this section,we will recallthe work in
(Hoste et al., 2002)on the construction of word-experts with tailored feature
sets. Regardingthe study of the learning curves, in sectionI11.5.4 we will
descrike the work carried out in (Ng, 1997)on the DSO corpus.

Finally, we will refer to related works to compare the performance of
DLs with other algorithms in the samesetting. In section|11.5.7, we will
presen (Escuderoet al., 2000b), where three ML methods (NB, AB, and
K-nearest neighbors) are applied to the disambiguation of all the words in
DSO. We will shav the results of ead algorithm, and compare them to
our baselinesetting. The conclusionsof recernt works that include other
ML algorithms are also mertioned in this section, with commerts on the
relative performanceof DLs (Yarowsky and Florian, 2002; Villarejo et al.,
2004), and on the uctuations found on the experimerts in relation to the
parameter space(Yarowsky and Florian, 2002;Hoste et al., 2002). For more
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comparative results, sectionsl11.5.8 and 111.5.9 descrike the systemsthat we
built for the Senseal-2 competition for English and Basquerespectively, and
shaw the overall result tables. The Englishresultswerepreviouslyintroduced
in sectionll.7, with the description of somesystems.

1.3 EXxperimentabkettings

This sectionis organizedin four parts, and will introduce the experimertal

setting that we will usethrough the dissertation. First, we will de ne the
target setsfor our experimerts. Those sets will consist on word and le

setsde ned from Semcorand DSO, and the datasetsin the Senseal tasks.
The next subsectionwill descrike the pre-processingof multiw ords, specially
in relation to the Senseal-2 corpora. The next segmeh will be dewted to

erumeratethe di erent settingsthat will be usedthroughout the dissertation,
and this subsectionwill be referencedn the \experimertal setting” sections
of the chapters to come. Finally, we will outline the setting that will be
applied for the work in this chapter.

[11.3.1 Testsets

In order to ewaluate our system, we have to choosea target word set. We
can choosea xed set of \represenative" words, or we can take a corpus
and try to disanmbiguate all the wordsthat appear. For our rst experimerts
in Semcorand DSO we selecteda set of words attending to criteria like
frequency ambiguity and bias. We alsodisanbiguated all the cortent words
in somegiven les, and all the DSO corpus. For the di erent Senseal tasks,
we usedas test words the onesprovided by the organization.

111.3.1.1 Semco test set

We selected19 test words trying to cover the maximum variety of cases.
Thus, we classi ed them accordingto thesefactors:

Frequency: number of training examplesin Semcor(low, high)
Ambiguity: number of senseglow, high)

Bias: skew of most frequent sensein Semcor(low, high)
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As we will seein sectionI11.5.2, the two rst criteria are interrelated
(frequert wordstend to be highly ambiguous), but there are exceptions.The
third criterion seemgo beindependen, but high biasis sometimeselatedto
low ambiguity. We could not nd all 8 combinations for all parts of speeh
and the following sampleswere selected: 2 adjectives, 2 adverbs, 8 nouns
and 7 verbs. These19 words form the test set A. The DSO corpusdoesnot
contain adjectives or adverbs, and focusesin high frequencywords. Only
5 nouns and 3 verbs from Set A were present in the DSO corpus, forming
Set B of test words. The list of words can be consultedin the appendix (cf.
table B.6).

In addition, 4 les from Semcorpreviously usedin the literature (Agirre
and Rigau, 1996) were selected,and all the content words in the les were
disanbiguated.

111.3.1.2 DSOtest set

Another word-set was de ned for the experimerts that relied on the DSO
corpus, asthe previously de ned set B cortained only 8 words. In this case
we useda set of 21 verbsand nounspreviously usedin the literature (Agirre
and Martinez, 2000;Escuderoet al., 2000c). We will refer to thesewords as
set C. The list of words is givenin the appendix (cf. table B.6).

111.3.1.3 Sensevalest sets

The di erent senseal tasks provide di erent word-setsand cortexts to eval-
uate the systems. This is the list of tasks our systemshave beentested on
(the tableswith the wordsin the lexical-sampletasksare givenin sectionB.1
in the appendix):

Senseal-2 English lexical-sampletask (73 words)
Sensesl-2 Basquelexical-sampletask (40 words)
Senseal-3 English lexical-sampletask (57 words)
Senseal-3 Basquelexical-sampletask: (40 words)

Sensesl-2 English all-words task
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111.3.2 Pre-pocessof multiwords

In somecasesthe target word we want to disambiguate is part of a mul-
tiword that hasits own ertry in a senserepository. In WordNet, for ex-
ample, many multiwords are represeted, e.g. church building, ne arts,
etc. For lexical-sampletasks, in some casesthe multiwords are excluded
(English tasks in Senseal-1 and Senseal-3), and in other casesthey have
to be detected (Basquetasks in Senseal-2 and Senseal-3, English task in
Sensesl-2). In order to recognizemultiw ord sensesthey canbe included in
the sense-listof the target word and treated like other sensesHowewer, usu-
ally a better option is to incorporate a pre-processingstageto try to detect
them with a seart in the cortext.

Regarding our experimerts, in the all-words corpora we used (Semcor,
Senseal-2 and Senseal-3), multiwords are always marked; although in the
caseof Senseal-2 it was not always easyto idertify them, and this could af-
fect our results(cf. sectionlll1.5.8). For the lexical-sampletasks, we adopted
three approadesin di erent experimerts:

1. Treat the multiword sensesas any other sense: this approah was
adopted for our rst experimerts with the English task in Senseal-
2% (sections111.5.8, IV.6, and IV.7), and also for the Basque tasks
(sectionsll1.5.9 and V.8).

2. Remove multiword senseqand proper nouns): we chosethis setting
in order to avoid noisein our experimerts on automatic acquisition of
exampleswith the Sensesal-2 English data (chapter VI).

3. Apply a pre-processto detect multiword senses:this step was inte-
grated for the experimerts in chapter V with the Senseal-2 English
data, and is explainedbelow.

In order to achieve better performancein lexical-samplesettings with
multiw ord senseswe built a supervisedtool to detect them independertly.
The tool proceedsby idertifying all the lemmasaround the target word that
appearin WordNet (continuousand non-cortinuous), and using DLs learned
from training data for the speci ¢ ambiguity (e.g. to determine whether art

IMany of the multiw ord casesin Sensewl-2 were phrasal verbs. The Sensewl-2 corpus
also included proper-noun marks as sensetags, these caseswere discarded due to their
dicult vy.
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or arts is the correct lemma, only examplesfrom training that have those
candidatesare used). The training data is usually scarce,but the recall of
this processreades96.7%in the Senseal-2 English lexical-samplecorpus.

111.3.3 Specic Settings

In our study of di erent aspectsof WSD, we will apply di erent settings(cor-
pora, sense-imertories, and word sets) depending on the parameterswe are
studying and the resourcesavailable at the momert. In this sectionwe will
descrike the main settingsthat will be applied throughout the experimerts.

1.3.3.1 Semco&DSO

This setting hasbeenusedfor the basicset of experimerts (chapter I11), and
for experimerts with richer features(chapter IV). See gure 111.1.

[11.3.3.2 WSJ&BC

We have applied this setting in order to study genre/topic variations (chap-
ter VI1). The main characteristicsare givenin gure 111.2.

111.3.3.3 Senseval2

This setting is related to the three tasks on which our systemspatrticipated
in the Senseal-2 competition: English lexical-sampletask, English all-words
task, and Basque lexical-sampletask. This setting is frequenly applied,
speci cally in chapter IIl, chapter IV, and chapter V. See gure [I1.3 for
details on this setting.

111.3.3.4 Senseval2B

For this setting, the multiword senseghat appearin the Senseal-2 lexical-
sampleEnglish corpusareremoved, in orderto test the automatic acquisition
of sense-tagge@xamples(chapter VI). The resultstraining on the automat-
ically obtained examplesare comparedwith the results training on Semcor.
Figure 111.4 shows the characteristics of this setting.
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111.3.3.5 Senseval3

This setting is related to the two tasks on which our systemsparticipated in
the Senseal-3 competition: English lexical-sampletask, and Basquelexical-
sample task. This setting is applied in chapter V. Details are given in
gure 111.5.

Corpora:  Semcor and DSO.

{ Used separately, by applying cross-validation in each
corpus.

Sense inventories:

{ WordNet 1.6 for experiments in Semcor.

{ WordNet 1.5 for experiments in DSO.
Word-sets:

{ set A and set B.
{ All words in 4 Semcor files.

{ AIl 191 tagged words in DSO.

Figure 111.1: Semcor&DSOsetting.

Corpora: DSO.

{ The two parts of DSO(WSJand BC) used separately for
cross-tagging.

{ Cross-validation to evaluate each corpus separately.

Sense inventory: WordNet 1.5.

Word-set: C.

Figure 111.2: WSJ&BC setting.
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Corpora:

{ Lexical tasks:

Senseval-2 English lexical-sample  corpus:
separated training and test.
Senseval-2 Basque lexical-sample  corpus:
separated training and test.

{ All-words task (English):

Semcor for training.
Senseval-2 English all-words task corpus for
testing.

Sense inventories:

{ WordNet 1.7Pre:  English lexical-sample and all-words
corpora.

{ WordNet 1.6: Semcor (automatically = mappedto WNL1.7Pre
(Daude et al. , 2000)).

{ EHinventory: sense list from a Basque dictionary  (cf.
section 11.2).

Word-sets:  Target sets in Senseval-2 (cf. sections
11.3.1.3 and B.1).

Figure 111.3: Senseal2 setting.

Corpora:

{ Training: Semcor and automatically  retrieved examples.

{ Testing: Subset of Senseval-2 English lexical-sample
testing part.

Examples tagged with multiword senses,
phrasal verbs, and proper nouns removed (cf.
section 11.3).

Sense inventories:

{ WordNet 1.7Pre:  English lexical-sample testing and
automatically  retrieved examples.

{ WordNet 1.6: Semcor (automatically = mappedto WNL1.7Pre
(Daude et al. , 2000)).

Word-set:  The nouns in the Senseval-2 English lexical-sample
task.

Figure 111.4: Senseal2B setting.
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Corpora:
{ Senseval-3 English lexical-task corpus:  separated
training and test.
{ Senseval-3 Basque lexical-task corpus:  separated
training and test.

Sense inventories:

{ Nouns and adjectives are annotated
using the WordNet 1.7.1 sense inventory
(http://www.cogsci.prin ceton.edu/ wn/).

{ Verbs are annotated based on Wordsmyth definitions
(http://www.wordsmyth.n  et)

Word-sets:  Target sets in Senseval-3 (cf. sections
11.3.1.3 and B.1).

Figure I11.5: Senseal3 setting.

111.3.4 Experimentalsetting for this chapter

Most of the experimerts performedin this chapter will usethe Semcorand
DSO corpora, in the setting descrited in section 111.3.3.1. As features,
the basic feature setsintroduced in the following section I11.4 will be ap-
plied. Only the last experimerts that compareour systemto othersin the
Senseal-2 framework will require a di erent setting (Senseul-2 setting, cf.
section111.3.3.3). In this casealso the feature set has slight di erences for
English, and this will be explainedin the correspnding section.

111.4 Extractionof featuredromthe context

This section is dewted to the extraction of basic features. We will rst
descrike the feature-setwe will use for the baselineEnglish system. After
that, we will explain the processto construct the feature-setthat will be
appliedin our experimerts with Basque.

[11.4.1 Basicfeaturesfor English

Throughout the thesis, we will usedi erent feature sets,and di erent tools
to extract them from the context. For English, there will bedi erent features
depending on the phenomenawe are studying, and thesewill be descrited
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more accuratelyin the correspnding sections.In this part, we will introduce
the basicfeature set that we will apply in chapter I11.

We have taken as basic feature set a group of items from the corntext
widely usedin the literature (Yarowsky, 1994;Ng and Lee, 1996). We will
separatethem into topical and local features.

Topical featurescorrespnd to open-classwvord-formsthat appearin win-
dows of di erent sizesaround the target word. In this experimerts we used
two di erent window-sizes: 4 words around the target, and the word-forms
in the sertence.

Local featuresinclude bigramsand trigrams that cortain the target word.
Local featuresare formed by the PoS, or word-forms. Lemmatization is not
usedin this basicfeature set, becausene will test it separately togetherwith
more informed features.

We can seean exampleof the extraction of featuresin gure 111.6. Each
line correspndsto onefeature. The analysisof the raw text to obtain lem-
mas and PoStags is donedi erently depending on the corpus. Semcorpro-
vides all the information, including multiwords and named ertities; DSO
and Senseal-2 were processedusing di erent tools. The PoS tagging was
performedwith TnT (Brants, 2000)for the basic set of features. For poste-
rior experimerts, the fnTBL toolkit (Ngai and Florian, 2001) was applied.
For the lemmatization, we usedthe functions provided with the WordNet
distributions.

[11.4.2 Basicfeaturesfor Basque

For Basquewe only apply a set of features,which will be descriked in this
section, along with the main characteristics of the language. It would be
interesting to analyzeother possibilities, but that study is out of the scope
of this thesis.

Basqueis an agglutinative language,and syrtactic information is given
by in ectional su xes. The morphologicalanalysisof the text is a necessary
previous step in order to selectinformative features. We usedthe output
of the parser (Aduriz et al., 2000), which includes someadditional features:
number, determiner mark, ambiguousanalysesand elliptic words. For a few
examplesthe morphologicalanalysiswasnot available, dueto parsingerrors.

In Basque,the determiner, the number and the declensioncaseare ap-
pendedto the last elemen of the phrase. When de ning our feature set for
Basque, we tried to introduce the sameknowledgethat is represeied by
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local features, for word-forms:
{ bigram - left - word-form : “'Protestant"
{ bigram - right - word-form : Tare"
{ trigram - right - word-forms : “that Protestant"
{ trigram - center - word-forms : “Protestant are"
{ trigram - right - word-forms : “are badly"
local features, for part-of-speech:
{ bigram - left - PoS: "JJ"
{ bigram - right - PoS: “VBP"
{ trigram - right - PoS: IN JJ"
{ trigram - center - PoS: JJ VBP"
{ trigram - right - PoS: “VBP RB"
topical features, for word forms:
{ window - 4 words : come
{ window - 4 words : remarks
{ window - 4 words : Protestant
{ window - 4 words : are
{ window - 4 words : badly
{ window - 4 words : attended
{ window - sentence : many
{ window - sentence : sides
{ window - sentence : come
{ window - sentence : remarks
{ window - sentence : Protestant
{ window - sentence : are
{ window - sentence : badly
{ window - sentence : attended
{ window - sentence : large
{ window - sentence : medieval
{ window - sentence : cathedrals
{ window - sentence : look
{ window - sentence : empty
{ window - sentence : services

Figure l11.6: Featuresextracted for the target word church from the sertence
From many sidescomeremarksthat Protestantchur ches are badly attended
and the large medieval cathadrals look all but empty during services.
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featuresthat work well for English. We will descrike our feature set with
an example. For the phrase "elizaren arduradunei” (which means"to the
directors of the church”) we get the following analysisfrom our analyzer:

eliza  j-ren jarduradun j-ei
church jof the jdirector jto the +plural

The order of the wordsiis the inversein English. We extract the following
information for eat word:
elizaren:

Lemma: eliza (church)

PoS: noun

Declension Case: genitive (of)
Number: singular

Determiner mark: vyes

arduradunei:

Lemma: arduradun (director)
PoS: noun

Declension Case: dative (to)
Number: plural

Determiner mark: yes

We will assumethat eliza (church) is the target word. Wordsand lemmas
are showvn in lowercaseand the other information in uppercase.As local fea-
tures we de ned di erent typesof unigrams, bigrams, trigrams and a window
of 4 words. The unigrams were constructed combining word forms, lem-
mas, case,number, and determiner mark. We de ned 4 kinds of unigrams:

Uni_wf0 elizaren

Uni_wfl eliza SING+DET

Uni_wf2 eliza GENITIVE

Uni_wf3 eliza SING+DETGENITIVE

As for English, we de ned bigrams basedon word forms, lemmasand
parts-of-speet. But in order to simulate the bigrams and trigrams usedfor
English, we de ned di erent kinds of features. For word forms, we distin-
guishedtwo cases: using the text string (Big_wf0), or using the tags from
the analysis(Big_wfl). The word form bigrams for the exampleare shavn
below. In the caseof the feature type \Big wf1", the information is split in
three features:

Big _wf0 elizaren arduradunei

Big_wfl eliza GENITIVE

Big_wfl GENITIVEarduradun _PLUR+DET
Big_wfl arduradun _PLUR+DEDATIVE
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Similarly, depending on the use of the declensioncase,we de ned three
kinds of bigrams basedon lemmas:

Big_lemO eliza arduradun
Big_lem1 eliza GENITIVE
Big -lem1 GENITIVEarduradun
Big_lem1 arduradun DATIVE
Big_lem2 eliza _GENITIVE
Big_lem2 arduradun _DATIVE

The bigrams constructed using Part-of-spee are illustrated belowv. We
included the declensioncaseasif it was another PoS:

Big_pos--1 NOUNGENITIVE
Big _pos_-1 GENITIVENOUN
Big_pos_-1 NOUNDATIVE

Trigrams are built similarly, by combining the information from three
consecutie words. We alsousedaslocal featuresall the cortent wordsin a
window of 4 words around the target. Finally, as global featureswe took
all the cortent lemmasappearing in the cortext, which was constituted by
the target sertence and the two previousand posterior seriences.

One dicult caseto model in Basqueis the ellipsis. For example, the
word \elizakoa" means\the onefrom the church". We were able to extract
this information from our analyzer and we represeted it in the features,
using a special symbol in place of the omitted word.

1.5 EXxperiments

Now that we have introduced the experimertal setting, this sectionis de-
voted to the study of the main questionsraised in the introduction. The
experimerts will exploredi erent aspectsof the WSD problem.

[11.5.1 Baselineandbasicfeatures

In our rst experimert, we usedthe basicfeature setde ned in sectionlll.4.1
to train the system,and comparedthe results with two baselines:the ran-
dom baselineand the more informed MFS baseline(cf. sectionll.4.1). The
random baselineis directly obtained by meansof the ratio of the total num-
ber of senses.The experimert was performedfor the 19 words in set A (for
Semcor),and the 8 wordsin setB (for DSO).
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Semcor DSO
Wword PoS | S| Rand e "1 el /s | MmFs DL || Ex | Ex/s | MFs| DL
Al A | 250 | 211 | 10550 | 99 | 997100
Long A | 10|10 | 193] 193053 | 63/99
Most B | 3|33 | 238 7933 | 74 | 78/100
Only B 7| 14 | 499 | 7129 | 51 | 69/100
Account N 10 | 10 27 2.70 | 44 57/85
Age N | 5|20 | 104| 2080|772 | 76/100 || 491 | 9820 | 62 | 73/100
Church N | 3|33 | 128| 4267 |41 | 69/100 || 370 | 123.33 | 62 | 71/100
Duty N | 3|33 25 | 833 32 61/92
Head N |[30]3 179 | 597 | 78 | 88/100 || 866 | 28.87 | 40 | 79/100
Interest N | 7|14 | 140| 2000/ 41 62/97 || 1479 | 211.29 | 46 | 62/100
Member N | 5|20 74 | 1480 | 91 | 91/100 || 1430 | 286.00 | 74 | 79/100
People N | 4|25 | 282| 7050 90 | 90/100
Die vV 119 74| 673 ] 97 97/99
Fall v | 323 52 | 163 |13 | 34/71 || 1408 | 44.00 | 75 | 80/100
Give v | 452 372 | 827 22 34/78 || 1262 | 28.04 | 75 | 77/100
Include v | 4|25 | 144 36.00]| 72 70/99
Know v |11 9 514 | 4673 | 59 | 61/100 || 1441 | 131.00 | 36 | 46/98
Seek v | 5|20 46 | 920 |48 | 62/89
Understand | V | 5| 20 84 | 1680 | 77 | 77/100

Table I11.1: Information for the words in set A (Semcor)and set B (DSO),

and resultsfor baseline§Random and MFS) and DL (trained with the basic
set of features).

S: number of sensesRand: Random baseline; Ex./S: number of examples
per sense.

The results for the Semcorand DSO corpusfor eat word are shavn in
table I11.1. For DLs the precisionand coverageare given, for the baselines
only the precision (the coverageis always 100%). Complemering the pre-
cision and coverage gures, the following information is provided for eah
word: number of sensesn WordNet 1.6, number of examplesin the corpus,
and number of examplesper sense(frequency/ambiguity ratio). These g-
ures can give an idea of the di cult y of the words. E.g. fall only has 1.63
examplesper senseand the MFS precisionis 13%, which indicates that we
should not expect high accuracy For this word, DLs obtain 34% precision
for 71%coverage,shaving that the systemis able to achieve results over the
MFS baselineeven with few training data.

We have markedthe winning columnin boldface,and we canseethat DLs
beat the baselinesalmost in all casesin Semcor(only include gets slightly
lower resultsthan MFS). In DSO, DLs are always better than the baselines.
With respect to the coverage,for Semcorit doesnot readh 100%in all cases,
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Semcor DSO
set A set B set B
Adj. | Adv. Noun | Verb | Over.| Noun | Verb | Over. | Noun | Verb | Over.
Senses 5.8 5.7 9.4 20.3 | 123 10.0 293 | 17.2 10.1 28.6 18.8
Examples | 202 | 368.5| 119.9 | 183.7 | 178.2 | 125.0 | 312.7 | 195.4 | 927.2 | 1370.3| 1093.4
Examples | 34.7 | 645 | 12.6 9.0 14.4 125 10.7 | 11.3 92.7 46.7 63.4

per sense

Random 31 20 19 10 17 16 6 10 16 5 1
MFS e 58 69 51 61 63 42 50 56 61 59
DL 82/ 72/ 80/ 58/ 70/ 77/ 49/ 60/ 72/ 67/ 70/

100 | 100 99 92 97 99 90 94 100 99 100

Tablelll.2: Averageresults(DL and baseline),and statistics for the basicset
of featuresin Semcorand DSO. For DLs, precisionand coverageare given.

becausesomedecisionsare rejected when the log likelihood is below zero.
On the cortrary, the richer data in DSO enables100%coverage.

For a better analysis, table 111.2 groups the previous values per word-
set and PoS. The values are micro-averagedwith the number of examples
per word (cf. sectionll.5.1). The three upper rows of the table illustrate
the relation betweenthe ambiguity and the frequencyfor the word-setsin
Semcorand DSO: average number of senses.examples,and examplesper
sense(ratio). The next two rows indicate the precisionof the random and
MFS baselines(always with full coverage). Finally, the performanceof DLs
is shown (precisionand coveragegiven). The best precisionfor ead column
is denotedin boldface. We will point out someconclusionsfrom this table:

The number of examplesper word sensas very low for Semcor(around
11 examplesper sensefor the wordsin SetB), while DSO hassubstan-
tially more training data (around 66 examplesper sensein set B). It

hasto be noted that seeral word senseslo not occur neitherin Semcor
nor in DSO.

The randombaselineattains 17%precisionfor SetA, and 10%precision
for SetB.

The MFS baselineis higherfor the DSO corpus(59%for SetB) than for
the Semcorcorpus(50%for SetB). This rather high discrepancycanbe
due to tagging disagreemety as will be commerted in the concluding
sectionof the chapter.
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The scarcedata in Semcorseemsenoughto get results over the base-
lines. The largeramourt of datain DSO warrants a better performance,
but it is still limited to 70% precision. Overall, DLs signi cantly out-
perform the two baselinesn both corpora:

{ SetA: 70%vs. 61% (Semcor).

{ SetB: 60%vVs. 50% (Semcor),70%vVs. 59% (DSO).

If we analyzethe words accordingto PoS, we canclearly seethat verbs
get the lowest precision, specially in Semcor(58% for set A, 49% for

set B). Verbsare very ambiguous, and the \examples per sense"ratio

is low. In DSO, the di erence in precisionfor verbsand nounsis not so
evident (72% for nouns, 67% for verbs), even when the exampleratio

for nounsis twice as high (92 to 46). Nouns, adjectives, and adverbs
always scoreover 70%, adjectives reading 82% precisionin Semcor.
The worst coverageis also for verbs: in Semcor92% of the examples
are covered for set A and 90% for set B; while for the other PoS the

coverageis 99%or 100%.

Looking at the di erence betweenDLs and MFS, we notice that verbs
get the lowest improvemen in almost all cases,except for the adjec-
tivesin Semcor,which have a high MFS (77%), di cult to beat. The
most impressiwe gain is for adverbs, which improve MFS in 14 points.
In sectionll1.5.2, we will study words accordingto their poliseny, fre-
guency and skew; and we will extract someconclusionsin relation to
the performanceover the baselines.

It isdicult to comparethe results obtained for set B in Semcorand
DSO, probably due to the discrepanciestagging the samewords on
di erent corpora. By PoS,we can seethat the precisionis much better
for verbsin DSO (67% vs. 49%), but for nounsit is better in Semcor
(77%vs. 72%). Even if DSO hasmuch more training data (927 exam-
ples per word in averagefor nouns, versus 125 examplesper word in
Semcor),and we would expect the precisionto be higher. We can see
in table 111.1 that 4 out of 5 nouns achieve better results on Semcor
data. The reasoncould be that, even if the word set is the same,the
tagging di erences make the task di erent.
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Prepro cessing and

Word POS Examples | Testing time (secs.) training time (secs.)
All A 211 2.00 711.20
Long A 193 2.00 745.20
Most B 238 2.40 851.80
Only B 499 5.20 1143.50
Account N 27 0.00 131.60
Age N 104 1.00 302.90
Church N 128 1.00 175.60
Duty N 25 0.00 133.30
Head N 179 1.20 500.40
Interest N 140 1.30 397.20
Member N 74 1.00 303.70
People N 282 2.80 686.60
Die \% 74 0.20 276.50
Fall \% 52 0.20 303.10
Give \% 372 4.60 968.30
Include \% 144 1.30 526.70
Know \% 514 4.40 924.30
Seek \% 46 0.00 230.80
Understand \% 84 0.90 344.70
Avg. A 202.00 2.00 728.20

set A Avg. B 368.50 3.80 997.65
Avg. N 119.88 1.04 328.91

Avg. V 183.71 1.66 510.63

Table I11.3: Execution time for DL with the examplesin Semcor.

Regardingthe executiontime, table 111.3 shavstraining and testing times
for ead word in Semcor. Training the 19wordsin setA takesaround 2 hours
and 30 minutes, and it is linear to the number of training examples,around
2.85 secondsper example. Most of the training time is spernt processing
the text les and extracting all the features,which includescomplexwindow
processing.Oncethe featureshave beenextracted, training time is negligible
asalsois the test time (around 2 seconddor all instancesof aword). Training
time hasbeenmeasuredon CPU total time on a Sun Sparc10 macine with
512 Megabytes of memory at 360 Mhz.

[11.5.2 Kindsof words: polisemy/bias/frequency

In this experimert we analyzedthe e ect on disanmbiguation performance
of three factors: ambiguity, frequency and bias. Thesecharacteristics have
beende ned in sectionl11.3.1.1, and have beenusedto choosethe word-
sets. Our goal was to obsene whether the disanbiguation precision of a
word can be determined by its ambiguity, frequency or bias. We measured
the absolute precisionof DLs, and the precision of the DLs relative to the
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baselines(di erence in precision).

We deweloped the experimert with the set A of words, and the Semcor
corpus. We usedthe results on the previous experimert (seetable 111.1)
to draw the precision depending on the di erent factors, and study them.
Theseare our conclusions:

Frequency: Figure 111.7 plots the precision (absolute and relative) ac-
cording to the number of examplesemployed to train eat word. The
resulting graph shavs no improvemen for words with larger training
data. This is dueto the interrelation betweenfrequencyand ambiguity.
The words that are more ambiguous, have more examplesin Semcor.
Therefore, the frequencyof a word in the corpus doesnot determine
the disanmbiguation precisionwe can expect.

Ambiguity: Similarly, the data of gure 111.8 doesnot indicate whether
ambiguouswords are easierto disanbiguate. Again, the reasonis that
words with many sensesccur more frequertly.

Bias: This is the parameter that a ects the performancethe most.
Words with high skew obtain better results, but the DLs outperform
MFS mostly on words with low skew (see gure 111.9).

Overall decisionlists perform very well (comparedto MFS) even with
words with very few examples(E.g.: duty (25) or account (27)) or highly
ambiguouswords.

111.5.3 Featuretypes: relationbetweenword typesand basicfea-
ture types

The goal of this experimernt was to analyze separatelythe performanceof
featuresfrom local and global cortexts in disanmbiguation. There have been
previousexperimerts in this line (Gale et al., 1993;Leacak et al., 1998)and
they have shavn that topical cortexts tend to work better for nouns. For our
experiment, we considerbigramsand trigrams (PoStags and word-forms) as
local, and two featuresastopical: all the word-formsin the sertence,and a
four-word window around the target.

The results are illustrated in table 111.4. We showv the performance
achieved for eat word, and the micro-averagedresults per PoS and over-
all. In ead column, the precisionand coveragefor eah feature set (local
features,topical features,combination) is given.
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Semcor DSO
Word Pos Local | Topical | Combination Local | Topical | Combination
All A 99/100 98/91 99/100
Long A 67/98 61/87 63/99
most B 79/100 71/95 78/100
only B 72/100 60/96 69/100
account N 55/78 47/56 57/85
age N 73/99 78187 76/100 76/98 70/97 73/100
church N 60/98 74/89 69/100 | 68/100 72/96 71/100
Duty N 62/84 75148 61/92
Head N 89/100 90/85 88/100 78/99 76/97 79/100
Interest N 55/86 57/86 62/97 68/91 60/98 62/100
Member N 90/99 91/89 91/100 | 81/100 78/100 79/100
People N 90/100 89/94 90/100
Die \ 97/99 96/70 97/99
Fall Vv 35/60 35/25 34/71 81/99 80/96 80/100
Give \% 41/54 32/52 34/78 | 77/100 78/98 77/100
Include \% 69/98 73/85 70/99
Know \ 59/99 57/90 61/100 52/89 37/81 46/98
Seek Vv 70/80 40/43 62/89
Understand \% 77/100 75/81 77/100
Avg. A 84/99 81/89 82/100
Avg. B 74/100 64/96* 72/100
Avg. N 78/96 81/87 80/99 75197 71/98* 72/100*
Avg. V 61/84 57172 58/92 70/96 | 66/91* 67/99*
Overall 72/93 68/84* 70/97 73/96 69/95* 70/100*

Table I11.4: Local context vs. topical context in Semcorand DSO. Preci-
sion and coverageis shavn. The mark *' indicates statistical signi cance
accordingto the t-test (only for PoSand overall gures).

We alsoapply a paired Studert's t-test of signi cance (cf. sectionll.5.2)
to seewhether the di erence betweenthe approadesis statistically signi -
cant. We measuredthis value for local featuresvs. topical features,and also
for the winning system (local or global) vs. conbination of features. The
con dencevalue we usedwastg.g.975 = 2:262. We shaw the results of the test
grouped by PoS and overall, not by word; the \topical* and \combination"
columnsinclude the character *' whenthe t-test indicatesthat the di erence
Is statistically signi cant.

The resultsin Semcorshow that, attending to precision,topical features
adhieve the bestresultsfor nouns,while for the other parts of speet the best
precisionis for the local features. Theseresults are consisten with those
obtained by Gale et al. (1993) and Leacak et al. (1998). Word by word,
we can seethat 6 out of the 8 nounsobtain better results when trained on
topical features,and 12 of the other 13wordslearn better from local features.
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Howeer, accordingto the t-test, there is only signi cant di erence in the
caseof adverbs, and overall. The overall results showv that local features
get better precision and coveragein comparisonto topical features. The
combination of all featuresgetssimilar recall to local features(68%).

The results with the DSO corpus are in clear cortradiction with those
from Semcor:local featureshave better precisionboth for nounsand verbs.
Out of the 8 words, only the noun church and the verb give achieve better
precision with topical features. It is hard to explain the reasonsfor this
cortradiction, but it canbe related to the amourt of data available in DSO,
and the di erences of tagging in both corpora (Ng et al., 1999). We have to
note that for nouns, topical featuresget better coveragethan local features
(exactly the opposite behavior to the Semcorresults). This could mean
that the large amourt of data in DSO provides more overlapping casesfor
the topical features, and those are applied with lesscon dence, damaging
precision. Again, the combination of both kinds of features attains lower
precisionin averagethan the local featuresalone, but this is compensated
by a higher coverage,and overall the recall is very similar (70%). The t-test
nds the local featuressigni cantly better than the topical featuresfor all
parts of speed, and the di erence betweenlocal and conbined featuresis
alsofound to be signi cant (even if they have similar recall overall).

Recenn work in WSD has focusedon the construction of word experts
(Hoste et al., 2002),wherethe set of featuresthat works bestis chosenfrom
held-out data for ead word. In this experimert, we canseethat there are big
di erences for somewords depending on the feature set we use (e.g.: know
in DSO). We studied the results of the 8 commonwords in both setsto see
whether the results whereconsisten, and we could separatelocal-words and
topical-words. Only one word (church) worked better with topical features
in both corpora, and 2 (fall and know) worked better on local features. The
fact that for the other 5 words di erent setswhere preferred in these two
corpora shaws again that the di erencesin tagging make di cult to extract
conclusions.

[11.5.4 Leaningcurve

One questionthat we should addressis the quartit y of data neededto train

our supervisedsystems.With that goal, we trained our systemwith increas-
ing quartities of data to seewhether the systemkept learning or it readed
a standstill. The learning curve would be the graph resulting from this data.
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In a previous paper (Ng, 1997), it is estimated that about 1,0000ccur-
rencegper word shouldbetaggedto train a high accuracydomain-independen
system. Basedon this reference,Ng estimated that an e ort of 16 person-
yearswould be requiredto tag enoughexamplesfor the most frequen words
in English (he proposedto usethe most frequen senseheuristic with the rest
of the words, which would accoun for lessthan 10% of all the occurrences,
and those would be the lesspolisemous). Also in the mertioned work, he
studied the learning curvesof di erent word setswith a high number of ex-
amples,using the DSO corpus. He shaved that the systemkept improving
when more data was added, even for words with more than 1,300examples.

In this section,we studied the learning curve for our experimertal setting.
We performed the experimert in Semcorand DSO, using the same set of
words (set B). We retained increasingamourts of the examplesavailable
for training ead word: 10% of all examplesin the corpus, 20%, 40%, 60%,
80%,and 100%. Cross-alidation was applied for testing the results, and the
processworked as follows: we partitioned the whole training setin 10 parts,
and for eat cross-alidation stepwe usedonedi erent part for testing. From
the remaining data, we chosethe correspnding percenage (10%, 20%,40%,
...) randomly for training.

The learning curve in Semcoris shovn in gure [11.10 and the DSO
curve in gure 111.11. In the gures, the Y axis marks the disambiguation
performance(given asthe recall, to normalize betweenthe precisionand the
coverage),and the X axis indicates the number of examples. The averaged
curvesfor ead part of speet (nouns and verbs), and the overall curve are
given.

The noun curve in Semcorshaws that there is not enough data for a
regular behavior. There are around 125 examplesin averageper noun, and
eah 20%implies that only 25 examplesare addedto the training set, which
do not seemto make a di erence for the higher partitions. On the cortrary,
for verbs we seea steady increaseof recall when we train with more data.
The overall results also showv a constarily ascendan curve.

For DSO, the system keepslearning with more data, but it seemsthat
there is no di erence from 80% to 100%, suggestingthat the system may
have readed its top. At 80%, it usesan averageof 930 examplesper noun,
and 1370per verb. The performanceis 72% for nouns and 67% for verbs.
As we have seenin sectionll1.5.1, the resultsfor nounsare better in Semcor
than in DSO.
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Figure 111.11: Learning curve in the DSO corpus.

[11.5.5 Noisein the data

In this section we want to ewaluate the e ect of noisy training data. The
goal of this test is to analyzethe performanceof the systemwhenthe tagged
data carriesan expected amourt of error. In a real setting, this would help
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us to know what to expect when we obtain the training data automatically
(with noise)instead of by hand.

The experimert works asfollows: we introducedrandom incorrect tagsin
the examples,and created four new samplesfor training from ead corpora
(Semcorand DSO). Each samplehad a xed percenage of noise: 10% of
the exampleswith random tags, 20%, 30% and 40%. We performed the
experimert using the commonset B of words. The results for ead corpus
are illustrated in gures 111.12 and 111.13. The graphicsshow the recall for
eat percenage of noise,from 0% to 40%. The averagedcurvesfor nouns,
verbs, and the overall curve are given.

In the gures, we can seethat the performanceon Semcordata drops
instantly when 10% noiseis introduced, and keepsdecreasingconstartly as
we insert more noisein the data. In cortrast, whenthe systemis trained on
DSO, it resistsmuch better to noise,and only getsheavily a ected whenthe
percenage of noisereathes40%. If we considerthe curve of the nouns, we
saw in sectionl11.5.1 that for setB the Semcordata obtained better results,
but it is enoughto introduce 10% of noisein both corpora to eliminate this
di erence.

We can concludethat when we have few examplesto train, asin Sem-
cor, the noisea ects the performanceheavily, and it is necessaryto use big
amourts of data in order to minimize the damage.

[11.5.6 Fine-grainedss. coase-grainedlisambiguation

The choice of the senseinventory is a certral discussionin WSD work. As
we pointed out in the introduction chapter, for this researb we choseto
work with WordNet sensedistinctions. This xed invertory may be too
ne-grained for many NLP tasks.

In this section we will measurethe precision we can get using coarser
senseghan thosede ned in WordNet, but which can yet be usefulfor some
applications. We will de ne this invertory using the WordNet architecture,
which groupssensesnto semartic les. In these les, the synsetsare grouped
by part-of-speet and semattic similarity. Someexamplesof typesof groups
are the following: \nouns denoting acts or actions"”, \nouns denoting ani-
mals”, etc. The completelist for nounsand verbsis givenin table B.7 in the
appendix. We can seehow the grouping can be applied to the noun agein
gure 111.14.

For the experimert, we replacedthe senseagsin Semcorand DSO data
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4 senses grouped in the semantic file ““time™:

{ fageg A historic period; "we live in a litigious age".

{ fageg Atime in life (usually defined in years) at
which some particular  qualification or power arises;
"she was now of school age".

{ fage, long time, years g A prolonged period of time;
"we've known each other for ages"; "I haven't been
there for years and years".

{ fage, old age, years g Time of life; "he's showing his
years"; "age hasn't slowed him down at all".

1 sense in the semantic file attribute™:

{ fageg Howlong something has existed; "it was replaced
because of its age".

Figure 111.14: Grouping for the noun age 5 sensesn WordNet 1.6 in 2
semairtic les.

for their correspnding semaric le tags, and applied cross-alidation as

usual. Again, we usedthe common8 word set (set B). Overall, the number

of sensesn averagereducedfrom 17.25sensedo 6. The grouping of senses
was stronger for verbs (from 29.3to 6.3), while for nouns the granularity

reducedfrom 10to 5.8. Table 1.5 shows the results. The precisionand

coveragein Semcorand DSO is shovn for synsetsand semaittiic les. The

results are averagedper PoS and overall.

The precisionwe obtain with semartic les is 83%in both corpora, with
total coveragein DSO, and 98% coveragein Semcor. The results are sig-
ni cantly better than with synsets,but the amourt of error (17%) is still
important. For nouns, we can seethat the improvemert is small (1 preci-
sion point in Semcor,4 in DSO), even when the averagepoliseny has been
signi cantly reduced. We could attribute this low results to the scarcity of
data, and the sensesparsenessf the data points (the sensegshat appearin
the corpuscould belongfrequertly to di erent sematic les).

For verbsthe results are much better. There is more training data, and
the reduction in sensegranularity is bigger, which enablesthe systemto
achieve good results. The best performanceis obtained in DSO, where the
1,370examplesper word give a precisionof 91%. Semcorprovides 312 ex-
amples per word, and the precision reates 87%. Again, we can seethe
importance of having enoughtraining data in order to take prot of di erent
techniques.
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# Semartic Semcor DSO
Words PoS | # Synsets Fields Synset SF | Synset SF
age N 5 2 | 76/100 75/100 73/100 74/100
church N 3 3 | 69/100 69/100 71/100 71/100
head N 30 15 | 88/100 88/100 | 79/100 80/100
interest N 7 5 62/97 67/99 62/100 72/100
member N 5 4 | 91/100 91/100 | 79/100 79/100
fall \% 32 7 34/71 57171 80/100 85/100
give \% 45 10 34/78 72/95 77/100 87/100
know \% 11 2 | 61/100 100/100 46/98 100/100
Avg. N 10 5.8 77199 78/100 72/100 76/100
Avg. V 29.33 6.33 51/90 87/96 67/99 91/100
Overall 17.25 6 62/94 83/98 | 70/100 83/100

Table I11.5: Precisionand coveragedisanbiguating coarsesensesn Semcor
and DSO.

[11.5.7 Expectedperfamancefor all wordsin a text

For this experimert, we wanted to gobeyond the xed word setsand estimate
which performancecould we expect disanbiguating all the cortent words in
a corpus. In order to do that, we disanmbiguated the content words in four
Semcor les, and alsothe nounsand verbstaggedin DSO.

Starting with the Semcorexperimert, we disambiguated all cortent words
in 4 les previously usedin another work (Agirre and Rigau, 1996). In that
work, the les wererandomly chosento test their unsupervisedmethod, con-
ceptual density, and compareit to other unsupervised methods (Yarowsky,
1992; Sussna,1993). Although the direct comparisonwith DLs is not pos-
sible, becausethe experimerts are de ned di erently, the results can give a
referenceof the performanceof the unsupervised methods. The target les
belong to di erent genre/topic: Press-eportage (br-a0l1), Press: Editorial
(br-b20), Learned: Sciene (br-j09), Humour (br-r05).

We implemerted the experimert asfollows: for eat word in the target
le, we usedthe rest of the les astraining data. The rare polisemouswords
with no examplesin the rest of Semcorwere left out of the experimert. In
table 111.6, we presen the averagedresults for eatr le, and the average
results of the four les. The precisionand coveragevaluesshovn correspnd
to the polysemouswords in the les. Along with the precisionand coverage
values,the table shows the averagenumber of senseger word in WordNet;
the number of testing examples;and the precision of the MFS and random
baselinesas reference.



[11.5 Exp erimen ts 73

File Avg. Senses| Examples | Random | MFS | DL (prec./cov.)
br-a01 6.60 792 26 63 68/95
br-b20 6.86 756 24 64 66/95
br-j09 6.04 723 24 64 69/95
br-r05 7.26 839 24 63 68/92

| Average | 6.71] 7775 25| 63] 68/94 |

Table 111.6: Overall results disanbiguating 4 les in Semcor.Baselineshave
full-coverage.

PoS Avg. Senses| Testing examples| Random | MFS | DL (prec./cov.)
Adjs. 5.49 122.00 28 71 71/92
Advs. 3.76 48.50 34 72 80/97
Nouns 4.87 366.75 28 66 69/94
Verbs 10.73 240.25 16 54 61/95

Table I11.7: Overall results disambiguating 4 les in Semcor,given per PoS.
Baselineshave full-coverage.

The results display a similar performancefor all les: around 68% pre-
cision. The baselinesare also in the same numbers for the di erent les.
The facts that, on the one hand the results are similar for texts from di er-
ert sourceg(journalistic, humor, science),and on the other hand words with
varying degreesof ambiguity and frequency have comparable performance
(as seenin sectionl11.5.2), seemso con rm that the training data in Sem-
cor can provide theseresults acrossall kinds of words and texts, exceptfor
highly skewed words, wherewe can expect better performancethan average.

In table I11.7 the results are grouped accordingto the PoS of the target
word. We can seethat in this casethere are signi cant di erences.

Verbsare the most di cult to disambiguate (as we saw in table 111.2),
obtaining only 61% precision. They have the highestpoliseny (almost
11 senseger testing example). Howeer, the precisionis signi cantly
better than the MFS baseline(7% higher).

Nouns are the more frequen type in the testing data, totaling 47% of
the examples.The performancefor nounsis just above the overall av-
erage(69% precisionand 94%coverage). The coveragefor nounsis low
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in comparisonwith the baselineword-setsexperimert (sectionll1.5.1),
in this caseit is even lower than the coveragefor verbs.

Adjectives achieve a precision of 71% and a coverageof 92%. There
is no improvemern over MFS, and the results are far from the 82%
precisionreported previously for the 2 adjectivesin word set A.

Adverbs obtain the best results: 80% precisionand full coverage (8%
better recall than baseline). Theseresults con rm the good perfor-
manceseenin table 111.2.

The other experimert we conductedin this sectionwasto disanbiguate
all the nouns and verbs tagged in DSO (121 nouns, 70 verbs). The DSO
experiment gives us the opportunity to comparethe results with other su-
pervised approadies. In fact, Escuderoet al. (2000b) presen their results
disanbiguating the DSO corpus by meansof di erent ML algorithms, con-
cretely:

K-nn: K-nearestneighbors exemplar-basednethod.
AB: A variant of Shapireand Singer'sAdaBoost.MH.
NB: Naive Bayes.

For the implemertation, we used10fold cross-alidation to apply the DLs
and to measurethe MFS baseline,asin (Escuderoet al., 2000b). Table I11.8
reports the precisionand coverageof our approad, and the precisionreported
for the baselineand the other ML methods (always with full coverage).

The table shovs that DLs obtains similar resultsto AB in precision,and
slightly better than K-nn and NB. The results sene to illustrate that DLs
can adhieve state-of-the-art performance,but only asa reference.Evenif the
training and test data is the same,there are di erences in the experimerts:
the featurerepreseration, the cross-alidation procedure,and the evaluation
(value of partial answers) can lead to di erences. For example,the MFS
baselineis computeddi erently. In (Escuderoet al., 2000b)the precisionis
52.3%,while in our casein reades56%.

Moreover, Hoste et al. (2002) show that the performanceof di erent ex-
perimerts cansu er large uctuations dependingonthe following factors: the
ML method and its parametrization, the kind of featuresusedto represem
the examplesand the interaction betweenthe featuresand the parametersof
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PoS MFS | K-nn | NB | AB DL
Nouns 59 69| 68| 71| 72/99
Verbs 53 65| 65| 67| 68/98

[Overall | 56| 67 67| 70 | 70/99 |

Table 111.8: Overall results disambiguating DSO for di erent ML methods.
Coverageis given for DLs only (other methods have full-coverage).

the algorithm. Recen works showv that DLs perform worsewhen compared
with more sophisticatedmethods, see(Yarowsky and Florian, 2002;Villarejo
et al., 2004), or the comparisonbetweenDL and AB in sectionlV.6. In the
next sectionwe will analyzethe performanceof DLs in a cortrolled frame-
work to comparedi erent approadies: the Senseal competition.

To conclude,in this sectionwe have seenthat we canread a precisionof
68-70%,for a coverageof 94%-99%tagging all the corntent wordsin a corpus.
We have alsoseenthat the results are similar for di erent typesof texts and
words, with someexceptions:

Words with high bias are easier(cf. sectionll1.5.2).

The performancedependson the PoS of the words. Verbstend to be
the most di cult.

We have also introduced results of other approadheswith the samecor-
pora. We will study this further in the next section.

111.5.8 Compaisonwith othermethadsin arealsetting: Senseval2

In this experimert, we evaluated our method in the Senseal-2 competition,

which was reviewed in section 11.8. This gave us the chanceto compare
the performanceof our systemwith many other algorithms. The Senseal-2
framework presertied di erent tasksin ten languages.The main tasks were
the disambiguation of all the content wordsin a corpus(all-wordstask), and
the disambiguation of selectedwords in di erent cortexts (lexical-sample
task). Normally, training data was provided for the lexical samples,but not
for the all-words tasks. We presen here our basic systemfor di erent tasks
in Senseal-2; a di erent versionincluding conmbination of algorithms, richer
features,and smaothing was presened in Senseal-3. This last versionand
its performanceis descriked in chapter V.
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We participated in three tasksin Senseal-2: English lexical-sample,En-
glish all-words, and Basquelexical-sample. For the lexical-sampletasks, we
usedthe training data provided by the organization;for the all-wordstask we
usedthe Semcorcorpus,which required a WordNet versionmapping (Daude
et al., 2000). We presened a total of 5 systems,and in this section we
will describe the two basic English experimerts: English lexical sampleand
English all-words. We also submitted the results of systemsbasedon fea-
ture selection(which will be descriked in sectionIV.7), and results for the
Basquetask (preserted in sectionl11.5.9). Our cortribution to Senseal-2 is
publishedin (Agirre and Martinez, 2001).

We had to adapt necessarilyour setting for these experimerts, because
the corpus, the target words, and the senseinverntory were di erent. We
alsodecidedto introducea few changesin the basicfeature set: we included
bigrams and trigrams formed by lemmas, and we usedlemmas (of cortent
words only) instead of word-formsin the cortext windows. Besides,for the
lexical-sampletask, we used all the cortext provided by the organization
instead of one single sertence. The Senseal-2 setting was descrited in sec-
tion 111.3.3.3, the details of our submissionto the English tasks are given in
gure [11.15.

Before we analyze the results, we want to mertion that we did not a
complexpre-processingof the data (the featureswere extracted asdescrited
in section I11.4.1). Certainly, the detection of multiwords would improve
signi cantly the results (cf. sectionll1.3.2). Respecting the all-words task,
the unavailability of mapping for the adjectives, and the scarcity of data in
Semcora ected strongly the coverage.

In orderto comparethe results for the lexical-sampletask, we recall the
table that we presened in sectionlll.4.1, with our baselinesystemmarked
in bold. Thus, in table I11.9, the performanceof ead of the 20 competing
systemsis given. The results are sorted by recall, and correspnd to the
ne-grained scoring. Only the last versionsof resubmitted systems(R) are
included. The baselinesystemsprovided by the organization,which arenot in
the table, achieved the following recall: 51.2%(Lesk-corpus,cf. sectionll.6),
47.6%(MFS), and 14.1%(Random).

We can seethat our systemranks 9th of 20in precisionand recall. With
a recall of 56.4%, our simple implemertation was not far from the more
elaborate systems,and it was signi cantly better than the best baseline.

In the all-words task we obtained almost the same precision as in the
lexical-sampletask: 57.2%,but the coveragewas limited to nounsand verbs
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Feature set

{ bigrams of word-forms, lemmas, and PoS.
{ trigrams of word-forms, lemmas, and PoS.
{ Bag of lemmasof the content words:

4 word window around the target.

the whole context, usually the 2 preceding and 2
succeeding sentences (lexical-sample task).

the sentence (all-words task).

Sense inventory: WordNet 1.7 pre-release, specially
constructed for Senseval-2.

Sense mapping

{ Weperformed an automatic mapping between the senses
in Semcor (tagged with WordNet 1.6) and WordNet 1.7
pre-release

{ Only nouns and verbs were mapped, due to time
constraints.

Lexical-sample  experiment

{ 73 words (29 nouns, 29 verbs, and 15 adjectives).
{ Source corpus: BNCand WSJ.

{ 8611 tagged instances for training (approx. 118 per
word).

{ 4328 instances for testing.
All-words  experiment

{ Testing: 5,000 words of running text.

{ Source corpus: WSJarticles from different domains of
the Penn TreeBank II.

{ Semcor for training (via mapping).

Figure 111.15: Setting for the Senseal-2 submissiongEnglish tasks).

with training examplesin Semcor,and readed only 51%o0f the target words.
Besides,even if multiw ords were marked, they were not properly iderti ed

for our experimerts, and this wasanother sourceof error. Our systemranked
14th out of 21 in recall, and 7th out of 21 in precision. Table 111.10 shaws
the results for the 21 systems, in this casethere is no distinction between

2The system CL Resarch-DIMAP is assignedmore than 100%coveragein the o cial
results, due to somemistake.
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Position | Precision | Recall | Coverage | System

1 64.2 64.2 100.0 JHU (R)

2 63.8 63.8 100.0 SMUIs

3 62.9 62.9 100.0 KUNLP

4 61.7 61.7 100.0 Stanford - CS224N
5 61.3 61.3 100.0 Sinequa-LIA - SCT
6 59.4 59.4 100.0 TALP

7 57.1 57.1 100.0 Duluth 3

8 56.8 56.8 99.9 UMD - SST

9 57.3 56.4 98.3 BCU - ehu-dlist-all
10 55.4 55.4 100.0 Duluth 5

11 55.0 55.0 100.0 Duluth C

12 54.2 54.2 100.0 Duluth 4

13 53.9 53.9 100.0 Duluth 2

14 53.4 53.4 100.0 Duluth 1

15 52.3 52.3 100.0 Duluth A

16 50.8 50.8 99.9 Duluth B

17 49.8 49.8 99.9 UNED - LS-T

18 42.1 41.1 97.7 Alican te

19 66.5 24.9 374 IRST

20 82.9 233 28.0 BCU - ehu-dlist-b est

Table111.9: Supervisedsystemsin the Senseal-2 English lexical-sampletask
sorted by recall (version 1.5, published 28 Sep. 2001). Fine-grainedscoring.
R: resubmitted system. Our basicsystem(BCU - ehu-dlist-all) givenin bold.

supervisedand unsupervisedmethods. The format of the table is the same
that we described for the lexical-sampletask, and the version of the results
isalsol.5.

The organizationprovided a MFS baseline which assumederfectlemma-
tization, and did not attempt to nd multiwords. The precisionand recall
of this baselinewas 57%, which was very dicult to beat (only the three
best systemsadieved better recall). As we have seen,our systemobtained
comparableprecision,but much lower coverage.

[11.5.9 Evaluationon Basquein Senseval2

For the last experimert on this chapter, we testedthe DL method on another
language: Basque. Somecharacteristics, and the extraction of features for
Basqueare descriked in sectionlll.4. As we did for English, a more sophis-
ticated systemwas preserted in Senseal-3, which is descrited in chapter V.

Three di erent teamstook part in the Senseal-2 lexical sample task:
Johns Hopkins University (JHU), Basque Country University (BCU) and
University of Maryland (UMD). The third team submitted the results later,
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Position | Precision | Recall | Coverage | System

1 69.0 69.0 100.0 SMUaw

2 63.6 63.6 100.0 CNTS-An twerp

3 61.8 61.8 100.0 Sinequa-LIA - HMM

4 57.5 56.9 98.9 UNED - AW-U2

5 55.6 55.0 98.9 UNED - AW-U

6 47.5 45.4 95.5 UCLA - gchao2

7 47.4 453 95.5 UCLA - gchao3

8 41.6 45.1 108.5 CL Research - DIMAP

9 50.0 449 89.7 UCLA - gchao

10 36.0 36.0 99.9 Univ ersiti Sains Malaysia 2
11 74.8 35.7 47.7 IRST

12 34.5 33.8 97.8 Univ ersiti Sains Malaysia 1
13 33.6 33.6 99.9 Univ ersiti Sains Malaysia 3
14 57.2 29.1 50.7 BCU - ehu-dlist-all

15 44.0 20.0 453 She eld

16 56.6 16.9 29.8 Sussex- sel-ospd

17 54.5 16.9 31.0 Sussex- sel-ospd-ana

18 59.8 14.0 23.3 Sussex- sel

19 32.8 03.8 11.6 1T 2

20 29.4 03.4 11.6 1T 3

21 28.7 03.3 11.6 1T 1

Table I11.10: Supervised systemsin the Sensesal-2 English all-words task
sorted by recall (version 1.5, published 28 Sep. 2001). Fine-grainedscoring.
Our basicsystem(BCU - ehu-dlist-all) is givenin bold.

Prec. | Recall | Attempted System
75.7 75.7 100 JHU
73.2 73.2 100 | BCU-eh u-dlist-all

70.3 70.3 100 UMD
64.8 64.8 100 MFS

Table I11.11: Resultsin Senseal-2 in the lexical-sampleBasquetask.

out of the Senseal competition. The results for the ne-grained scoringare
shawvn in table 111.11, including the MFS baseline. Assumingfull coverage,
JHU attains the best performance.Our systemobtained 73.2%precisionfor
100% coverage. The systemimproved in almost 9 points the precision of
the MFS baseline,but was two points below the best system (JHU- Johns
Hopkins University). We have to notice that the JHU systemwon the lexical
sample task both for Basqueand for English; and while the di erence in
recall with our systemwas only 2% for Basque,it readed 8% for English.
We think that the reasonfor this is that our feature setfor Basqueis better,
although our ML algorithm is worse.
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[11.6 Conclusions

Throughout this chapter, we have worked with an algorithm basedon DLs
and basicfeaturesin di erent experimerts. Our goalsin this analysiswereto
measurethe performancewe could achieve with this basic system(in order
to compareit to the approadesin the next chapters), and also to study
di erent aspectsof the WSD problem on this setting.

We have seenthat the Semcorcorpus provides enoughdata to perform
somebasic generaldisambiguation, at 68% precisionon any generalrunning
text. The performanceon di erent wordsis surprisingly similar, asambiguity
and number of examplesare balancedin this corpus. The main di erences
are given by the PoS of the target words: the verbs presen the highest
poliseny and lowest precision (11 sensesn average,61% precision),asit is
usually the case.

The DSO corpus provides large amourts of data for speci c words, al-
lowing for improved precision. It is newerthelessunableto overcomethe 70%
barrier, and as we have mertioned in sectionll1.5.1, the results for nouns
are better in Semcor,due probably to tagging disagreemets. Other works
in the literature that rely on DSO have shavn similar performancewith ML
algorithms like AB and NB (Escuderoet al., 2000b).

Howewer, when applied to the Sensesl-2 dataset, the system preserts
much lower performance,with a precisionof 57%for the lexical-sampleand
all-words tasks (the recall wasslightly lower in the lexical-sample,and much
lower for the all-words). There are di erent reasonsfor thesedisappointing
results. Focusing on the lexical-sample,we have to take into accour that
the best systemonly scored64.4%recall, signi cantly lower than the 70%
gures in Semcorand DSO. This indicates the dicult y of the word-set,
where participating systemsscoredspecially low with the verbs. Another
factor to explain the low performanceof our system was the importance
of pre-processingthe examplesto detect multiword sensesMost of the top-
performing systemsincludedsud a pre-processand this a ected the results’.
Finally, our systemwas not optimized for performance,its goalwasto be a
baselinesystemfor referencewhenapplying di erent improvemerts (feature
types,training exampleset, or conbination with other algorithms). We will
comebad to theseissuesat the end of theseconclusions.

3This factor motivated the construction of the multiw ord detection tool preseried in
section111.3.2
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Following with the analysisof the Senseal-2 results, an early conclusion
would be to blame the DL method on the low performancein front of more
sophisticatedML methods. But asthe work in (Hosteet al., 2002)shaws, the
performanceof thesekind of systemsis a ected by three factors: the learning
algorithm and the parameter setting, the feature set, and the interaction
betweenthem. As a referencethe DL algorithm was usedin the ensenble
presemed by the winning team (JHU, cf. section1l.6), and acieved 63%
recall. The main di erences with our systemwere the pre-processing,the
inclusion of syntactic dependenciesas features,and the weighing of feature
types.

Up to now, in the conclusionswe have addressedhe performancewe can
expect for di erent tasks and corpora, including the Senseal-2 evaluation.
Regarding the questionswe posedat the beginning of the chapter, these
are the main conclusionsof our experimerts, and how they a ect the WSD
system:

1. Word types: relation between polisemy/bias/frequency and
disam biguation performance

The highestresults can be expectedfor words with a dominating word
sense,but the dierence to the MFS baselineis lower. Words with
high poliseny tend to be the most frequert, which makesthe poliseny
and frequencyfactors balanceead other. Therefore,in orderto know
previously which are the di cult words, we would require information
about the frequency distribution of the senseswhich is dicult to
obtain.

2. Feature types: relation between word types and basic feature
types

Local featuresvs topical features. In our experimerts the behavior was
di erent depending on the corpus.

Semcor:topical featureswere better for nouns, but not for other
categories.Theseresults are consistedwith the work by Leacak
et al. (1998). Taking the results overall, local featuresperformed
better, and the recall for the whole set of featureswas similar to

using only the local set (but with higher coveragefor the whole
set).
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DSO: the local features achieved better performancethan the
topical set for all categories. This could be due to the much
higher number of examplesin DSO. The bestrecall was obtained
using the whole feature set, as topical featureshelp to improve
coverage.

It isimportant to note that singlewords exhibit di erent behavior, sug-
gestingthat the best policy could be the construction of word-experts
with speci ¢ feature sets(Hoste et al., 2002).

. How much data is needed? Learning curv e.

The learning curve shaws that Semcorhastoo few examplesfor these
experimerts. Specially nounsdo not have enoughdata to seea regular
behavior. For verbs we seea steady increaseof recall when we train

with more data. The overall results also shav an ascendah curve.
Therefore, more data would help to improve the WSD system.

In DSO, the system keepslearning with more data, but it stabilizes
with 80% of all the available data, which indicates that for this kind
of systemwe have readed the roof. At that point, it usesan average
of 930 examplesper noun, and 1,370per verb. The recall is 72% for
nounsand 67%for verbs.

. How much noise can the data accept?

About this factor, we can concludethat when we have few examples
to train, asin Semcor,the noisea ects the performanceheavily, and
it is necessaryto usebiggeramourts of data in order to minimize the
damage.

. Fine-grained vs. coarse-grained disam biguation.

The precisionwe obtain with semanic les is 83%, both in DSO and
Semcor;but with slightly lower coveragein Semcor.The improvemen
is specially noticeablefor verbs,wherethe reduction of sensegranularity
allowsto read 91%recallin DSO. An openissueisto nd applications
where coarsedisanbiguation would help.

6. Exp ected performance for all words in a text.
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Our experimerts in the Semcorand DSO corpora have illustrated that
we can expect a recall of around 68%-70%when working on this kind
of setting with the WordNet sensenvertory.

7. Comparison with other metho ds in a real setting: Senseval-2.

The resultsin this setting have beensigni cantly lower (57% precision)
dueto problemsrelated to the speci ¢ setting, aswas explainedin the
beginning of this section.

8. Study performance for another language, less studied and
with less resources: Basque.

Our main conclusionregardingour work for Basquewasthat morework
was neededon the feature set. Our aim wasto imitate the expressie-
nessof the well-studied featuresfor English WSD, and we introduced
seweral di erent feature typeswith that goal. A better study of the
cortribution of singlefeatureswould be desirable. In any case,the re-
sults in the Senseal-2 task are encouraging,with our systemonly 2%
below the winning JHU system (while the di erence was 8% between
these systemsfor English), which would indicate that our feature set
represeted better the cortext than the JHU set, although their ML
method was clearly better.

After the experimerts with our baselinesystem,we are now able to start
studying the main hypothesesof this dissertation: the cortribution to the
WSD problem of linguistically motivated feature represetations, and the
automatic acquisition of examplesto alleviate the knowledgeacquisition bot-
tlened.

Regardingthe feature set, it is clear that the integration of diverseand
informative featuresis necessaryto move towards the solution of the prob-
lem. Our resultsin the Senseal-2 setting in comparisonwith other systems
suggestthat a richer feature set (including at least syrtactic dependencies)
should improve the performanceof the system. In chapter IV, we will
introduce di erent feature typesbasedon syntactic dependenciessemaric
tags, and selectional preferencesn order to measuretheir cortribution to
disambiguation. We have also seenin our study of local/topical features
that di erent words bene t from di erent featuretypes,and we will explore
the possibility of choosinga di erent feature-setper word in a WSD system
basedon a trade-0 betweenprecisionand coverage.
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For the issueof the knowledgeacquisition bottlened, our experimerts on
the learning curves shav that more data would help to improve the WSD
systems.Moreover, the experimerts on the e ect of noiseillustrate that the
more exampleswe have, the smalleris the lossof performancein the presence
of noise. Therefore, if we could obtain a big corpora with somenoiseon it
(asit would happen with automatic means),it could be usefulfor WSD and
could alleviate the hand-tagging e ort. This issueis explored in-depth in
chapter VI .

Finally, apart from the feature typesand number of examples,we have
seenin this chapter that our basicsystemshouldinclude other characteristics
to be robust enough. For an enhancedversion of our systemto be tested
in the next Senseal, we will include a multiword pre-processingtool (cf.
section 111.3.2), and we will explore other ML algorithms and smoothing
techniques for better estimations of the training data (factors covered in
chapter V).



V. CHAPTER

New feature types: syntactic and semantic
knowledge

V.1 Introduction

In the previous chapter we mertioned that one of the limitations of our
systemwas the represemation of the context by meansof simple features.
As we noticed in the introduction chapter, the designof the feature-setis
crucial when building a supervised WSD system. The featureshave to be
genericenoughto be appliedin a variety of casesand yet they shouldre ect
the relevant information of the cortext at hand.

We will illustrate the importance of informative featuresby meansof an
example. Let us recall one of the questionsthat we introducedin chapter I:

Can you translatethe wholedocumentinto Basque?

Let us assumethat we want to disanbiguate the verb translate in the
sentence. For simplicity of the exposition, the goal will be to discriminate
betweenthe rst two sensesn WordNet 2.0, de ned as follows:

1. translate, interpret, render{ (restate (words) from one languageinto
another language).

2. translate, transform { (changefrom oneform or mediuminto another).
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There are interesting featuresin the cortext that could be extracted by
a dependencyparserfor the target word translate

Subject: you
Head Object: document
Head of Prepositional Phrase(into): Basque

In the basic feature set seenin chapter Ill, this information is handled
by di erent features,which would represem the words document and Basque
in the general\bag-of-words" feature; and the word you simply as a left
collocate.

Now, let us supposethat we have in our training set the serience \l
translatel a book from Italian to Basque" If we rely on the basic feature
set, the only feature that would match the test exampleis the general\bag-
of-words" feature, instantiated with the word Basque Howe\er, this feature
type can match also seeral irrelevant words. On the other hand, using
parsing information, the feature type \Head of Prepositional Phrase (into)"
would match for Basque This is a more discriminative feature type, and
could help to discard noise.

Moreover, this kind of linguistic feature could be usedto generalizeurther
(with the WordNet hierardy, for instance),and build selectionalpreferences,
asin (Resnik, 1992,1997). Following with the example,a training serience
like \I translated a book into Spanish" would be useful if the feature type
\Head of Prepositional Phrase (into)" would be able to allow matching of
classeghat are belov a superclasslike \Languages", thus relating Basque
and Spanish.

Traditionally, the WSD systemshave relied on basicfeature setsto learn
their models. Only in recen yearsthis picture has changed, with the ad-
vent of\o the shelf' parsingtoolsand other resourceghat can provide rich
features,like the domain information from WordNet Domains (Magnini and
Cavaglia, 2000). The useof thesetoolsto extract featureshave beennotice-
able in the systemsparticipating in Senseal, specially in the last edition.

Whenricherinformation is applied, normally the di erent featuresetsare
integrated together, and no study of the performanceof di erent featuresis
done. Howewer, there is interesting work on the cortribution of di erent
feature types (including syntactic dependenciedike the oneswe will study
on this chapter) in the works by Yarowsky and Florian (2002) and Lee and
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Ng (2002). We will descrike their conclusionson sectionlV.2. For our work,
we think that it is important to measurethe cortribution of ead knowledge
sourceseparately and that is one of the goals of this chapter. This study
would allow us to construct a feature-setin a principled way, and to avoid
redundart or noisy featuresin our setting.

Another important aspect of disanbiguation is that di erent words ex-
hibit di erent behavior; aswe have seenin the previouschapter, somewords
are better disanbiguated relying on the local cortext while otherstake more
prot from \bag-of-word" type features. Another example comesfrom the
literature, in the work by Gliozzoet al. (2004) we can seethat their method
basedon domainsworks well for somewords (domain-words), and obtains
very low performancewith others. The concept of word-experts (systems
tailored for eat dierent target word) is getting strong in WSD researt
in recert years(Decadt et al., 2004). Thus, asit is dicult to know which
knowledgesourcewill be usefulfor aword in a cortext, it would beinteresting
to exploreas many sourcesas possiblebeforewe shape our word-expert. In
this chapter, we have alsotested the selectionof featuresper word, starting
from a big set of basicand syntactic features.

The feature types we are going to study consist on a broad range of
syntactic features,semartic featuresextracted usingthe WordNet hierarchy,
and selectional preferenceslearned from an all-words sense-taggecdtorpus
(Semcor). The necessarysynactic knowledge will be extracted using the
Minipar parser (Lin, 1998b), which we chose after comparisonwith some
other available for researb. We will usethe dependencytreesto implement
experimerts usingthe Semcorand DSO corpora, and comparethe newsetting
to the basic feature set descriked in chapter 111. We will also apply those
featuresto the Senseal-2 setting, to be able to compareour results with
other systems. Our last experimert on syntactic features will consist on
algorithms that perform precision/coveragetrade-o to obtain systemsthat
can answer with high precisionto part of the test instances. One of these
algorithms will rely on selectionof featuresper word; an approad that could
also be useful to retrieve sense-taggeagxamplesautomatically in a fashion
similar to the method in chapter VI.

Regarding sematic features, for our rst experimerts we will extract
them from the context usingthe disambiguated corpus Semcorand the re-
lations in the WordNet hierardhy. We de ned featuresbasedon the synsets
surrounding the target word, the hypernyms of these synsets(at di erent
levels), and alsotheir semartic les.
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Finally, we will learn selectionalpreferencedor classef verbsusingthe
syrtactic dependenciesn the Semcorcorpus. We will rely on the WordNet
hierarchy to assignweighs to the relations between synsets, and we will
apply the learnedmodel to disambiguate the testing examples.

This chapter is organizedas follows. In the next sectionwe will describe
works from the literature that arein line with the aims of the chapter. Sec-
tion V.3 will outline the setting we will apply in the di erent experimerts.
SectionlV.4 will introducethe set of syntactic featuresthat we will acquire
from the dependencyparser. The next three sections(IV.5, 1V.6, and IV.7)
will be dewted respectively to experimerts performed with syrntactic fea-
tures in Semcorand DSO; to experimerts in the Senseal-2 setting; and
to the precision/coveragetrade-o experimerts. In the subsequen section,
IV.8, the semattic feature setwill be introduced, and the ewaluation of the
e ect of thosefeatureswill be coveredin sectionlV.9. The focusof the next
two sections(IV.10, and IV.11) will be selectionalpreferencelearning and
the correspnding ewvaluation. Finally, the conclusionsof the chapter will be
summarizedin sectionlV.12.

V.2 Relatedvork

The importance of integrating richer feature setsin WSD models is now
re ected in the growing number of systemsthat apply them in someway.
As we will see,the Senseal competitions and the recen literature o ers
many examplesof this trend. We will preseh someof them accordingto
the di erent knowledgesourceshey use: syntactic information (dependency
relations), semairic features (sensetags, or other sematic tags from the
conext), and selectionalpreferencesWe will perform experimerts separately
for them in this chapter, and we will try to measuretheir cortribution to
WSD performance.

IV.2.1 Syntacticfeatures

The feature typesthat are being most widely applied recenly are syntactic
dependencies.The availability of \o the shelf’ parsingtools, and someem-
pirical evidenceof their cortribution (Yarowsky and Florian, 2002;Lee and
Ng, 2002), have made them interesting for WSD researt. In (Lee and Ng,
2002), they apply the statistical parserfrom (Charniak, 2000), and extract
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a small set of featuresbasedon dependencies.They de ne di erent features
depending on the target PoS, and apply 4 di erent ML methods in a bat-
tery of experimerts. They report the best results until that day both on
the Senseal-1 and the Senseal-2 English lexical-sampledatasets. Syntactic
featurescortribute signi cantly to the overall performance.

In (Yarowsky and Florian, 2002) a complete survey of parameter spaces
is carried out, including syntactic featuresextracted by meansof heuristic
patterns and regular expressionver the PoS tags around the target word.
They descrike an ensenble of ML methods that competed for di erent lan-
guagesin Senseal-2; we already introducedthis systemin sectionll.7. The
main conclusionsof their study are that the feature spacehas signi cantly
greater impact than the algorithm choice, and that the combination of dif-
ferert algorithms helps signi cantly to WSD. Overall, the best results are
obtained combining di erent ML methods, and using the whole feature set;
but they notice that the syrtactic features cortribute lessthan local and
topical features. They argue that the reasonfor this could be the higher
sparsenes®f thesefeatures, and also the noiseintroducedin the detection
of features. They also show that syntactic featureshelp morein the disam-
biguation of verbs, and when applied with discriminative methods like DLs
or Transformation BasedLearning (TBL).

In the Senseal competitions for English, the number of systemsusing
syrtactic features has beengrowing. In Senseal-1 (cf. section|l.6) only
the winning system(JHU) applied thesefeaturesamongthe top-performing
systems.In Senseal-2 (cf. sectionll.7), againthe winning systemfrom JHU
(described above) relied on syntactic features;and we canalsomertion (Tug-
well and Kilgarri, 2001), which obtains a grammatical relations database
from the corpus, using nite-state techniquesover PoStags. This database
is usedto construct semi-automatically cluesfor disanmbiguation. The other
systemsdid not apply thesefeaturesin the English tasks, although oneused
dependenciego learn selectionalpreferencesaswe will seebelow. In the 3rd
edition of Senseal (cf. sectionll.8) many of the top ranked systemsincluded
syrtactic dependenciesn their feature sets. Howeer, in the lexical-sample
task, the two best systemsdid not have time to include them, but they men-
tion that they would like to try them on the future. In the all-words task,
the best performing systemsrelied on this type of knowledge, as separate
features (GAMBL), or with semaric generalizations(SenselLearner)pboth
thesesystemswere described in detail in sectionll.8.
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IV.2.2 Semanticfeaturesand selectionapreferences

Another way to exploit richer information is to generalizefrom the words in
the cortext usingdi erent techniques(generallywith the aid of resourcedike
the WordNet ontology). The processcan benet from the syntactic depen-
denciesseenin the cortext and construct what is called \selectional prefer-
ences"of the target word. There are many approadesrelying on this tech-
nique in the literature. Resnik(1992,1997)de nes an information-theoretic
measureof the assaiation betweena verb and nominal WordNet classesse-
lectional assaiation. He usesverb-argumen pairs from the BC. Evaluation
is performed applying intuition and WSD. The model we will introduce in
sectionlV.10 follows in part from his formalization.

Abe and Li (1996)follow a similar approad, but they employ a di erent
information-theoretic measure(the minimum description length principle)
to selectthe set of conceptsin a hierarchy that generalizebest the selec-
tional preferencedor a verb. They call their model Tree Cut Model (TCM).
The argumernt pairs are extracted from the WSJ corpus, and evaluation is
performedusing intuition and PP-attachmen resolution.

In (Stetina et al., 1998),they extract [word argument word] triples for
all possiblecombinations, and usea measureof \relational probability" based
on frequencyand similarity. They provide an algorithm to disanbiguate all
words in a sertence. It is directly applied to WSD with good results.

In (Stevensonand Wilks, 1999),selectionalrestrictions basedon LDOCE
sematic classesare applied in a \partial sensetagger" that is included in
a conbined system. They extract syntactic dependenciesusing a specially
constructedshallov parser,and the sense-taggeonly keepsthe senseshat do
not break any constrairt for the expectedsemaric classe®f the argumerts.
The classeof LDOCE are organizedhierarchically, therefore,the constrain
is kept if the semartic categoryis at the samelevel or lower in the hierarchy.

Regarding the Sensesl competitions, we descriked the system LIA--
Singqua in section11.6 as one of the best performing in Senseal-1. Their
systemtrained Binary DecisionTreeson a feature setthat included WordNet
sematic classesn xed positionsaroundthe target word. In Senseal-2, the
work by McCarthy et al. (2001)is an extensionof the TCM model descriked
above. In this case,the TCMs are acquiredfor verb classesnstead of verb
forms. They apply Bayesrule to obtain probability estimatesfor verb classes
conditioned on co-accurring noun classes.They usethe subject and object
relations betweenargumert heads. The main problem of this all-words sys-
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tem was the low coverage,and they alleviate it relying on the \one sense
per discourse"constrairt, and in anaphoraresolution. Finally, in Senseal-3
we can nd \SenselLearner",already described in sectionl1.8, which alsoap-
plies semartiic generalizationsin one of its two modules. This systemranked
secondon the English all-words task.

V.3 Experimentaketting

The experimerts performedin this chapter have followed two settings with
their correspnding corpora, senseanventory, and word-sets(cf. sectionl11.3.3):
\Semcor&DSQO" setting, and \Sensewal2" setting. As ML methods, DL and
AB have beenapplied. The new featureswill be descriked in sectionlV.4.
The experimerts are distributed asfollows:

Syntactic features: 2 settings:

{ Semcor&DSOsetting: DL method.

{ Senseal2 setting: DL and AB methods.

Semaitic features: Semcor&DSOsetting: DL method.

Selectionalpreferences:Semcor&DSOsetting.

V.4 Syntacticfeatures

In order to extract syrtactic featuresfrom the tagged examples,we need
a parser that meetsthe following requiremens: free for researt, able to
provide the whole structure with named syntactic relations (in cortrast to
shallov parsers), positively evaluated on well-establishedcorpora, domain
independen, and fast enough.

We found three parsersthat ful lled all the requiremens: Link Gram-
mar (Sleatorand Temperley, 1993),Minipar (Lin, 1998b)and RASP (Carroll
and Briscoe, 2001). We installed the rst two parsers,and performeda set of
small experimerts (John Carroll helped out running his own parser). Unfor-
tunately, a comparative evaluation doesnot exist; thereforewe performeda
litle comparative test, and all parsersachieved similar results. At this point
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we choseMinipar mainly becauset was fast, easyto install and the output
could be easily processedo extract dependencies.The choice of the parser
did not condition the designof the experimerts, and the results should also
be applicableto other parserswith similar performance.

From the output of the parser,we will extract di erent setsof features.
First, we distinguish betweendirect relations (words linked directly in the
parsetree) and indirect relations (words that are two or more dependencies
apart in the syntax tree, e.g. headsof prepositional modi ers of a verb). An
examplecan be seenin gure IV.1.

Henry obj _word listed
listed objl .word Henry

petition  modPrep_pcomp-nN.word listed

listed modPrep_pcomp-nNI_word petition

Figure IV.1: Relations extracted for the verb list from the sertence Henry
was listed on the petition as the mayor's attorney. Obj_.word:verb-object
relation. Mod_Prep.pcomp-n.N_word: relation of type \nominal head of a
modi er prepositional phrase" betweenverb and noun. I: inverserelation.

We will descrike the tuplesthat are extracted in the example. The direct
relation \v erb-object” is obtained betweenlisted and Henry and the indirect
relation \head of amodi er prepositional phrase"betweenlisted and petition.
For ead relation we store alsoits inverse. The relations werecodedaccording
to the Minipar iderti ers (seetable 1V.1). For instance,in the last relation
in gure IV.1, mod_Prep indicatesthat listed has someprepositional phrase
attached, pcomp-n.N indicatesthat petition is the head of the prepositional
phrase,l indicatesthat it is an inverserelation, and word that the relation
is betweenwords (as opposedto relations betweenlemmas).

The most relevant relations are shovn in table IV.1. For ead relation
this information is provided: the acronym of the relation, whether it is used
as a direct relation or to construct indirect relations, a short description,
someexamples,and additional commerts. The completelist of relations is
givenin table B.8 in the appendix.

Table 1V.2 illustrates the way the di erent dependenciesare related. We
seethat in order to extract the dependenciesbetween words, we have to
follow the relations that are given in Minipar. As the table showvs, some
dependenciesare de ned by 2 or 3 relations in Minipar. For ead relation,
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we showv the PoStags of the componerts and someexamples.The PoStags
give information about the subcategorization of the words, and we will use
them to build somefeatures. Somedependenciesepresen strong relations
(argumerts), and are marked in bold. The complete tagset of Minipar is
showvn in gure IV.2.

We will classifythe syntactic featuresas instantiated grammatical rela-
tions (IGR) and grammatical relations (GR).

IV.4.1 InstantiatedGrammaticaRelations(IGR)

IGRs are coded as f wordsense relation  value g triples, where the value
can be either the word form or the lemma. We alsousethe PoSinformation
to construct the Minipar relations (e.g. ModPrep.). The list of the relevant
relations in Minipar (cf. table IV.1), and the connectionsin table V.2 will
be the baseto selectthe relations that seemto have useful information,
for a total of 38 features. Two examplesfor the target noun church are
shovn belov. In the rst example, a direct relation is extracted for the
f building g sense(church#2 in WordNet 1.6), and in the secondexample
an indirect relation for the fgroup of Christians g senseg(church#1). The
former relatesdirectly the verb with its object, and the latter links the verb
surrender to church (which is the head of a prepositional phrase) following
two Minipar dependencies,namely mod (modier) and pcomp-n (hominal
head of PP).

Example 1 : \...Anglican churcheshave beendemolishé..."
f Church#2 obj _lem demolishg

Example2: "...to whip meninto a surrender to a particular church...”
f Church#1 modPrep_pcomp-nN.lem surrender g

IV.4.2 Grammaticakelations(GR)

This kind of feature refersto the grammatical relation itself. In this case,
we collect bigrams f wordsense relation g and also n-grams f wordsense
relationl relation2 relation3 ... g. The relations canreferto any ar-
gumen, adjunct or modi er. N-gramsare similar to verbal subcategorization
frames,and at presen, we have usedthem only for verbs. We want to note
that Minipar provides simple subcategorizationinformation in the PoSitself
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Relation l. Description Examples Commen ts
By-subj Subj. with passive
[} X | Clausal comple- | ... that John loves Mary

ment that <-c- John loves Mary
I go there for + inf. clause
go <-mod- (inf) <-c- for
<-i- mainverb
Cn X | Nominalized to issue is great Often wrong
clause be<-sinf <-cninf <-i issue
Compl Complement (PP, . one of the boys \b oy in the
inffn  clause) of | one (N_P) <-compl- of <- | garage" is MOD
noun pcomp-n- boy
. grants to nance hospi-
tals
grants (N_C) <- cl1- (inf)
<-i- nance
resolution which voted
resoluton (N_C) <-cl-
(n) <-i- voted
Desc Description . make a man a child Occurs frequently
make < -desc- child
Fc Finite complement .. said there is ...
say <-fc- (n) <-i- main-
verb
] X | Seec and fc, dep.
between clause and
main verb
Mod Modi er ...strik es increase as work-
ers demand...
increase <-mod as <-
compl n <-i demand
raises to cope with situa-
tion
raise < -mod inf < -i cope< -
mod with
<-pcomp-n situation
.. was already lost ...
lost <-mod- already
Obj Object
Pcomp-c Clause of pp in voting itself
in <-pcomp-c vpsc <-i-
votig
Pcomp-n Nominal head of | in the house
pp in <-pcomp-n house
Pnmod Postnominal mod. person < -pnmod missing
Pred Predicative (can | John is beatuful
be A or N) (n) <-i- is <-pred beauti-
ful
<-subj John
Sc Sentential comple- | force John to do
ment force < -sc-do
Subj
Vrel Passive verb modi- | fund <-vrel- granted When \pnmo d", is
er of nouns tagged as adj. (of-
ten wrongly), here
is tagged as verb

Table IV.1: The most relevant syrtactic relations, with examplesand com-

mens. D: Direct relation. I: Indirect relation.
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Source PoS | Dep. PoS Dep2. PoS | Dep3. PoS | Examples
V_N Obj N - - - -
V_N Subj N CN - NO - - - It does not link
likes
A (?) Sub j C i Y it is possible to
< -subj- be
V_N S N CN - cn -C - -V to buy is funny
V_N By-sub j | Pr pcomp-npcomp-c | NC - -V made by J.
made by cutting
N (no sub- | Mod P A pcomp-... end of doing,
cat) position of
accepted prac-
tice
A (no sub- | Mod P A pcomp-n/-c essential for,
cat) fastidious in
heavily traveled
VBE Mod CPNA | .. is to enter
is absolutely
V (no sub- | Mod CPA i.. pcom... combine to
cat) investigate
join after com-
pleting
was aproved
earlier
C (no sub- | Mod PCAN | pcomp... On other mat-
cat) ters, ske. does
N_A/ _C/ P compl APC | pcomp-c/-n i .V (only N) sth.
A_C/ _P close
one of the day
time to be
V_N/V _A Desc A N
N Pnmod A persons missing
N Vrel Vv bonds issued by
VBE Pred ANCP | i .. pco... there is a plan
birs are to end
is across ...
vV_C Fc C i \Y subcat C: have
to face
VI Sc \Y subcat I: force
sbto take
V no subcat Amod A even know

Table IV.2: Dependenciesand their relations. The PoScolumns indicate
the Pos tag given by Minipar to the componerts of the relation; the Dep.
(dependency)columnsindicate the type of relation betweenthe left and right
elemeits. Examplesare given in the last column. Argumerts are marked in
bold.
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Det:  Determiners

PreDet:  Pre-determiners

PostDet:  Post-determiners

NUM:Numbers

C: Clauses

I Inflectional Phrases

V: Verb and Verb Phrases

N: Noun and Noun Phrases

NN: Noun-Noun Modifiers

P: Preposition and Preposition Phrases
PpSpec: Specifiers of Preposition Phrases
A: Adjective/Adverbs

Have: Have Verb

Aux: Auxiliary verbs. E.g.. should, wil, does, ...

Be: Different forms of be: is, am, were, be, ...

COMP:Complementers
VBE: Be as a linking verb. E.g.: | amhungry
V_N: Verbs with one argument (the subject), i.e,

intransitive verbs

V_NLN: Verbs with two arguments, i.e., transitive verbs

V_NI:  Verbs taking small clause as complement

Figure IV.2: List of PoStagsin Minipar.

(e.g.: V.N.Nmark for a verb taking two argumens). We have de ned 3 types
of n-grams:

Ngram1: The subcategorizationinformation included in the PoS data
given by Minipar, e.g. V_N_N.

Ngram2: The subcategorizationinformation in ngraml, Itered using
the argumerts that really occur in the serience.

Ngram3: All dependenciesn the parsetree.



IV.5 Syntactic features on Semcor and DSO 97

The three types have been explored in order to account for the argu-
ment/adjunct distinction, which Minipar does not always assigncorrectly.
In the rst case,Minipar's judgmert is taken from the PoS. In the second
casethe PoS and the relations deemedas argumerts are conbined (adjuncts
are hopefully Itered out, but someargumens might be alsodiscarded). In
the third case,all relations (including adjuncts and argumeris) are consid-
ered.

In the following example, the ngraml feature indicates that the verb
fall hastwo argumerts (i.e. it is transitive), which is an error of Minipar,
probably causedby a gapin the lexicon. The ngram2 featureindicatessimply
that it hasa subject and no object, and the ngram3 feature denotesalsothe
presenceof the adverbial modi er still. Ngram2 and ngram3 try to repair
possiblegapsin Minipar's lexicon.

E.g.. His mother was nudging him, but he was still  falling
fFall#l ngraml V_.N.Ny
fFall#1 ngram2 subj g
fFall#1 ngram3 amodstill _subjg

IV.5 Syntactidfeatureson SemcoandDSO

In this sectionwe will descrike the experimerts that we performed on the

Semcorand DSO corpora using the featuresde ned in sectionlV.4. We tar-

getedthe experimerts on setting \Semcor&DSO" (cf. sectionll1.3.3.1); the
19-word set A was usedwhenworking on Semcor,and the 8-word set B with

DSO. We applied DL, and exceptionally for the experimerts in this section
pruning was not applied (cf. sectionll.4.2). The reasonnot to usepruning

was that we could foreseethat the coverageof the synactic featuressepa-
rately would be low, and we expected good recall for the algorithm making
decisionseven with few data.

For our rst experimert, we grouped the syntactic featuresin di erent
sets, accordingto the description given in sectionlV.4 . For the IGR, we
separatedthe relations obtained directly and indirectly; for the GR, we dis-
tinguished between direct and indirect bigrams, and we also separatedthe
three typesof n-gramsdescrited. There wasa total of sewen setsof syntactic
features. We also applied the algorithm to the basic features described in



98 New feature types: syntactic and semantic knowledge

Adj. Adv. Nouns Verbs Overall

Feature set Prec. | Cov. | Prec. | Cov. | Prec. | Cov. | Prec. | Cov. | Prec. | Cov.
MFS 77 100 58 100 69 100 51 100 61 100
Basic feats. 82.5 100 69.9 100 79.3 100 | 51.2 100 | 67.0 100
IGR - direct 86.5 | 31.2 71.1 | 20.2 78.2 | 69.0 49.1 | 69.2 64.0 | 53.9
IGR - indirect 100 1.0 100 0.7 | 90.9 8.0 479 | 193 59.2 9.9
GR - bigr. - direct 79.3 | 89.2 56.5 | 70.8 70.5 | 92.8 43.8 | 87.3 58.7 | 855
GR - bigr. - indirect 81.9 5.4 81.7 8.1 62.3 | 453 445 | 51.2 53.7 | 34.7
GR - ngraml 453 | 99.7

GR - ngram2 419 | 92.7

GR - ngram3 472 | 66.4

Table IV.3: Basic and Syntactic feature setsin Semcor. Precisionand cov-
erageof syrntactic feature sets,basic feature set, and MFS baseline. Results
per PoS and overall. Ngram featuresapplied only for verbs. Best precision
givenin bold for eat column.

sectionll1.4.1, to know the performancewe could achieve without pruning.

The results of this experimert, which was targeted to set A in Semcor,
using 10-fold cross-alidation, are shavn in table 1V.3. For eadh part-of-
speet and overall, the precisionand coverageof the sewen syntactic feature
sets, the basic feature set, and the MFS baselineare provided. The ngram
features,which provide subcategorizationinformation, were applied only for
verbs. For ead precisioncolumn, the bestresult is givenin bold.

The syntactic feature setsexhibited di erent behavior:

GR-bigram-direct was the only feature set that obtained acceptable
coverageoverall (85%), but its precisionwas lower than the basicfea-
ture setand the MFS baseline.

The setsGR-ngramland GR-ngram2obtained good coveragefor verbs,
but they alsohad lower precisionthan the baselines.We have to notice
that the MFS baselinefor verbswas as good asthe DLs with the basic
set of features,which madeit dicult to beat.

The IGR-direct feature setwasbetter in overall precisionthan the MFS
baseline,but for a coverageof 53%.

The indirect feature setsobtained high precision,exceptfor verbs, but
could only be applied in a few cases.
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Adj. Adv. Nouns Verbs Overall

Feature set Prec. | Cov. | Prec. | Cov. | Prec. | Cov. | Prec. | Cov. | Prec. | Cov.
MFS 77 100 58 100 69 100 51 100 61 100
Base Features 82.5 100 69.9 100 79.3 100 51.2 100 67.0 100
+ IGR-direct 82.8 100 | 70.3 100 | 79.4 100 51.1 100 | 67.1 100
+ IGR-indirect 82.5 100 69.9 100 79.2 100 | 51.4 100 67.0 100
+ GR-bigr-direct 82.7 100 69.9 100 79.1 100 51.2 100 66.9 100
+ GR-bigr-indirect 82.5 100 69.9 100 79.1 100 51.1 100 66.9 100
+ GR-ngraml 51.3 100

+ GR-ngram2 51.2 100

+ GR-ngram3 51.3 100

Table IV.4: Performancein Semcoradding syrtactic featuresto the basic
set. Best precisionper column given in bold.

From this experimert we have to concludethat whenusedseparately the
synactic featuresthat we extracted presen a lower performancethan the
basic feature set.

In our next experimert, we usedthe synactic feature setsin conbination
with the basic set of features. We expected the new featuresto provide
additional cluesthat would improve the performanceof the basic setting.
Thus, we repeatedthe previousexperimert combining the basicset and the
syrtactic sets. The results are shavn in table IV.4. As in the previous
experimert, the sewen new feature setsand the two baselinesare provided
per PoS and overall, and the best precisionfor ead column is marked in
bold.

We seeclearly that there is no improvemer over the results of the basic
set. It seemsthat the syntactic features do not add new information for
the DLs. Before we analyze theseresults in more detail, we repeated the
experimert on the DSO corpusfor the set B of words (cf. sectionll1.3.1.1).
We expected that this would help to improve the coverageof the syntactic
features,becausethe number of examplesper word is higher in this corpus.
The resultsareillustrated in table IV.5. For this experimert, we did not sep-
arate direct and indirect relations, and we included all the syrtactic features
in a new set (GR + IGR). The precisionand coverageof the synactic set,
and the conbination of basicand syntactic setsis showvn. The best precision
per columnis givenin bold.

We canseethat the coverageis still poor, but the precisionis higher than

in Semcor. The MFS baselineis easily beaten, the IGR featuresimprove
signi cantly the precisionof the basic set overall (with lower coverage),and
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Nouns Verbs Overall
Features Prec. | Cov. | Prec. | Cov. | Prec. | Cov.
MFS 56 100 61 100 59 100
Base Features 73.1 100 69.1 | 99.4 71.2 | 99.7
IGR 76.2 24.3 714 | 28.2 | 73.7 26.1
GR-bigram 68.4 | 350 | 71.7 26.8 69.8 | 31.0
GR-ngraml 46.3 | 40.6
GR-ngram2 52.9 | 37.6
GR-ngram3 545 | 28.2
IGR + GR 71.3 | 35.9 69.3 | 34.8 70.3 | 354
Basic + IGR 73.2 100 69.5 | 99.4 714 | 99.7
Basic + GR-bigram 73.2 100 69.2 | 99.4 71.3 | 99.7
Basic + GR-ngraml 67.9 100
Basic + GR-ngram2 67.9 100
Basic + GR-ngram3 68.0 100
Basic + IGR + GR 73.3 100 69.6 | 99.5 715 | 99.8

Table IV.5: Resultsfor basicand syntactic feature setsin DSO.

the GR featuresimprove the baseresultsfor verbs. The IGR featuresexhibit
a better behavior with nouns, and the GR featureswith verbs. Combining
all the features, there was a small improvemen over the basic set overall
(0.3%in precision,and 0.1%in coverage);and a bigger di erence for verbs
(0.5%in precision,0.1%in coverage).

At this point, we analyzedthe behavior of the di erent featuresseparately
in orderto know whether they can be usefulfor disanbiguation. We applied
the DL algorithm using only one feature ead time, and we ewvaluated the
precisionand coverage(normally low) of ead pieceof evidence.We included
in this experimert the basicfeatures,for comparison. For a better analysis,
we separatedhe resultsby PoS,and sortedthe featuresfollowing two criteria:
precisionand recall. The tables are too large to be included here, and can
be seenin sectionB.4 in the appendix.

Concerningthe precisionof the features,we seethat all the high-precision
features are syntactic, ewen if they attain very low coverage. There are
many featureswith 100% precision, but they are applied few times. For
instance, the full-precision feature that attains highest coveragefor nouns
is modPrep_pcomp-nN.lem (\lemma of the head of a modi er prepositional
phrase"). For referencewe already presened an examplewith a similar re-
lation for verbsin gure IV.1. This relation can be usedonly in 3.3%of the
examples(32 out of 959). For verbsthere are few full-precision features,and
their coverageis reducedto a handful of examples. The best is the feature
descl (description), which appearsonly 4 times (always with the verb die
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in the samesense).

Howewer, whenwe sort the featuresaccordingto their recall, the syrtactic
featuresare outperformed by basic features. For nouns, only basic features
achieve more than 25%in recall. The best performing featuresare cortext
windows, followed by local features(bigrams and trigrams) formedwith PoS,
local featuresformed with word-forms, and nally syrtactic features. The
best syrntactic featuresare formedwith the prepositional complemets of the
nouns,with 22.5%recall.

For verbsthe results are di erent. The recall is lower, asit usually hap-
pens,and the featurescan be ranked asfollows (range of recall given between
parertheses):

Context windows (45%-50%)

GR-ngraml (45.2%)

Local featuresformed with PoS (39%-43.5%)
GR-ngramz2 (38.8%)

Synactic features(leadedby GR-ngram3, subject, ...) and other local
features(0%-38.1%)

a kr 0 DnhPE

In this case,the syntactic featuresobtain better results. The GR-ngram
setsobtain good recall, even better than somebasic bigrams and trigrams.
This indicates that somesubcategorizationinformation has beenacquired.
Other syntactic featuresthat appearhigh in the table arethoserelatedto the
subject of the target verb, but attain lower coverage.In the tablesfrom the
appendix (cf. sectionB.4), where the results for all the featuresare given,
we can notice that many syntactic featuresdo not appearin the corpus.

Finally, in order to understand the reasonsof the small improvemern
when combining all the features, we focusedon somewords in the Semcor
experimert, and analyzedthe learned decisionlists. These are the main
conclusions:

1. Synactic featuresusually have fewer occurrencesin the training cor-
pus than basic features,and they rank low in the decisionlists. Even
syrtactic featureswith high frequencyin training usually have basic
features above them, which suggestthat the information may be re-
dundart.
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2. In the caseof words with a dominarnt sense,somesynactic features

that appear frequertly and do not carry much information (e.g. the
presenceof a determiner linked to a noun) can introduce noise and
point strongly to the most frequert sense.This happensalsowith non-
syrtactic features,but in a lessharming scalebecausehey comprisea
more reducedand cortrolled set.

The parserfails to detect many dependenciesand commits someerrors,
which a ects the precisionand specially the coverage.

From this rst analysis of the syntactic features, we can concludethat
di erent ways have to be exploredin order to take advantage of this source
of information. Theseissueswill be addressedin di erent sectionsof this
chapter:

Section IV.6 covers the performanceof the syntactic featuresin the
Sensesl-2 setting. By means of these experimerts we will seethe
performanceof another ML algorithm (AB) that will learn better from
redundan features,and alsothe quality of the relations extracted from
the Senseal-2 lexical samplecorpus.

SectionslV.10 and IV.11 in this chapter, introduce selectionalprefer-
enceslearnedfrom someof thesesyrtactic relations.

Feature selectionis presettied in section V.7, together with another
method to improve precision at the cost of coverage. Feature selec-
tion canbe a way to discard noisy syntactic features. In related work,
smoothing of features,descrited in chapter V, will provide better esti-
mations from the training data.

V.6 Syntacticfeatureson the Senseval-2apus

For the following experimerts, we will usethe Senseal-2 lexical samplecor-
pus, and evaluate the e ect of the syrtactic features. We descriked in sec-
tion 111.5.8 the basic experimerts we performedfor English in this competi-

tion.

The experimerts that we will show in this sectionwere not includedin

our Senseal-2 submissiondue to time constrairts.
We devisedtwo experimerts in order to measurethe cortribution of syn-
tactic featuresin the Senseal-2 setting. We will usethe training part of the
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IGR GR GR + IGR MFS
PoS Prec. | Cov. F1 Prec. | Cov. F1 Prec. | Cov. F1 F1
A 81.6 21.8 | 29.2 70.1 | 65.4 | 55.4 70.7 | 68.9 | 57.7 59.0
N 74.6 36.0 | 38,5 65.4 | 57.6 | 47.8 67.6 | 625 | 52.0 57.1
\ 68.6 32.2 | 334 67.3 | 41.2 | 39.2 66.3 | 52.7 | 45.4 40.3

[Ov. ]| 720 | 319 [ 352 ] 671 521 ] 46.0 | 67.7 | 595 | 504 || 482 |

Table IV.6: Performancefor di erent setsof syrtactic features(IGR, GR,
GR+IGR) applying DL onthe Senseal-2 corpus. The gures in bold indicate
the best precision,coverage,and F1 per ead PoS and overall.

lexical-samplecorpus for training, and the testing part for ewaluation; we
will apply the \Sensewal2" setting (cf. sectionl11.3.3.3), for all the words in
the lexical-sampletask, and the WordNet 1.7Pre sense-imertory. First we
will measurethe performanceof IGR-type and GR-type relations using DLs.
Next, we will evaluate the benet of adding syntactic featuresto the basic
feature set using DLs and AB.

Performanceis measuredas precisionand coverage. We also considerF1
to comparethe overall performance,becauseit givesthe harmonic average
betweenprecisionand recall (whererecall is in this caseprecisiontimes the
coverage). F1 will help usto comparethe results of the two ML algorithms.

For our rst experimert, table IV.6 shows the precision, coverage and
F1 gures for ead of the syrntactic feature sets as used by the DL algo-
rithm (IGR, GR, GR+IGR). The gures in bold indicate the best precision,
coverage,and F1 per eaty PoS and overall.

IGRs provide very good precision,but low coverage. The only exceptions
are verbs, which get very similar precisionfor both kinds of syrtactic rela-
tions. GRs obtain lower precisionbut higher coverage. The combination of
both attains best F1, and is the feature set usedin the next experimert.
Note that the combination of syrtactic featuresis able to outperform MFS
overall, and for verbs the increasein F1 is 5.1%. This indicates that the
featuresrepresemn useful information.

As a reference,beforewe presen the main experimert we will compare
theseresultswith the performanceof the previoussectionwith the DSO cor-
pus. Evenif the experimerts are di erent (di erent word-setsand corpora),
this will give us a better idea of the performancewe can achieve with this
kind of feature. The rows in table IV.7 indicate the three feature setsand
the MFS baseline;the columnsrepreseh nounsand verbsin the DSO and
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DSO Sensev al-2
Feature ~ set Nouns Verbs Nouns Verbs
IGR 29.8 31.4 39.5 33.4
GR 35.5 30.3 47.8 39.3
IGR+GR 37.7 35.8 52.0 45.8
MFS 56 61 57.1 40.3

TableIV.7: F1 valuesfor the syrntactic feature sets(IGR, GR, IGR+GR) in
Senseal-2 and DSO for nounsand verbs.

IGR + GR Local Basic Basic + IGR + GR

PoS | MFS DL AB DL AB DL AB DL AB

A 59.0 | 57.7 | 62.6 66.3 | 67.5 | 65.3 | 66.2 65.4 67.7

N 57.1 | 52.0 | 60.0 63.6 | 65.3 | 63.2 | 67.9 63.3 69.3*

\% 40.3 | 45.4 | 485 51.6 50.1 | 51.0 | 51.6 51.2* 53.9*
[Ov. [ 482 504 [ 552 [ 59.4 | 59.3 [ 585 ] 60.7 | 58.7 | 625" |

Table 1V.8: F1 results for di erent algorithms, feature sets, and PoS in
Sensewl-2. *' indicates statistical signi cance (McNemar's test) over basic
set.

Senseal-2 corpora.

Senseal results are higher than DSO results in all cases. Howeer, the
MFS baseline(which can sene as an indicator of the di cult y of the task:
the higher the MFS value, the easierthe disambiguation) is similar in both
corpora for nouns, but much higherin DSO for verbs. The better resultsin
Senseal-2 over the baselineindicate that the featuresare more reliable in
the Senseal-2 setting.

For our next experimert, DLs and AB were usedon syntactic features,
local features,a combination of local+topical features(also calledbasic),and
a conbination of all features(basic+syntax) in turn. TablelV.8 shovsthe F1
gures for ead algorithm, feature setand PoS.Regardingthe cortribution of
syrtactic featuresto the basicset, the last two columnsin the table include
the character *' wheneer the di erence in precisionover the basic feature
setis signi cant accordingto McNemar'stest (cf. sectionll.5.2).

AB is ableto outperform DLs in all casesgexceptfor local features. The
characteristicsof the methods can be seenin sectionll.4. Syrtactic features
get worse results than local features, but prove to be usefulin the combi-
nation. Focusingon the cortribution of syntactic features,we seethat DLs
prot from the additional syntactic featuresbut the di erence is only sta-
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tistically signi cant for verbs. On the other hand, AB attains signi cant
improvemen (1.8% overall, 2.7% for verbs). The results (specially for AB)
show that basic and syrtactic featurescortain complememary information,
and that they are useful for WSD.

V.7 Syntactidfeaturesandhighprecisiorsystems

A high-precisionWSD system can be obtained at the cost of low coverage,
preverting the systemto return an answer in the lowest con dence cases.
With this kind of approad, we can tag part of a raw corpus with high
con dence,to be ableto learn from sense-taggedccurrencesof a word. This
would be useful, for instance, to learn selectionalpreferencesnith methods
like the onesdescribed in sectionlV.8; or for WSD in an iterative way, asin
Yarowsky (1995b).

Methods to identify good featurescan be applied to high precisionsys-
tems. This approat would allow to idertify featuresthat work well for
speci ¢ words, and discard noisy features. At this point, wherethe evidence
suggeststhat the large set of syntactic featuresthat we have introduced
should be re ned (seesection IV.6), feature selection seemsa reasonable
path to explore. Thus, we have built one high-precision system basedon
feature selection with DLs, which consist on choosing a reducedfeature
setin cross-alidation for ead word.

Other two high-precisionapproades have also beentried with DL and
AB, following the method in (Daganand Itai, 1994)that appliesthresholds
to the decisionsof the algorithms. As in sectionlV.6, the experimerts have
beenperformedin the Senseal-2 lexical samplesetting.

We will start describingthe feature selection metho d. Ten-fold cross
validation on the training data for ead word was usedto measurethe preci-
sion of ead featurein isolation. Thus, the DL algorithm would be usedonly
on the featureswith precisionexceedinga given threshold. This method has
the advantage of being able to set the desiredprecisionof the nal system.
For example,for the noun art, using both basicand syntactic features,and
a threshold of 80% precision, the system choosesthe following featuresin
cross-alidation:

hasrelat_mod_inl

lex-mod_lem
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Basic+ IGR + GR Basic
Threshold

Prec. | Cov. F1 | Prec. | Cov. F1
0 59.4| 979 | 58.7| 59.3| 97.5| 58.5
50 59.7| 97.9| 59.1| 584 | 975 | 57.7
60 66.1| 83.5| 60.2 66.3| 79.5| 58.7
65 68.9| 75.9| 59.5| 69.2| 71.5| 57.7
70 72.1| 63.7| 56.1| 73.3| 56.9| 53.2
80 79.6| 48.2| 51.8| 80.4| 40.1| 46.0
85 83.7| 35.7| 44.0| 83.8| 27.4| 36.0
90 86.7| 26.4| 36.2| 88.9| 154 | 23.7
95 86.5| 19.7| 28,5 | 88.1 89| 144

TablelV.9: Featureselectionmethod with DL on two feature sets: basicfea-
tures, and extendedset with syntactic features(IGR + GR). Micro-averaged
performancefor ead threshold for the 73 words in the Senseal-2 lexical-
sample. In bold, the best F1 for eat feature-set.

nn_lem
nn_word
trig _lem0

trig_wf_0

Therefore, these would be the only featurestaken into accoun to tag
occurrencefart in testing. We have usedthe following precision-thresholds:
50, 60, 70, 80, 85, 90, and 95. The application of the samethreshold to all
words provokes that somewords can have no features selectedfor a given
threshold, and othersdo not have any feature Itered. More complexfeature
selection methods would overcomethis problem, but as we will see, this
simple approad is enoughto provide answers with high con dence for a
percenage of the testing data.

The results of the feature selection experimert using the basic feature
set, and the one extendedwith syntactic features(IGR + GR) are givenin
table 1V.9. For ead threshold, the table shaws the precision, coverage,and
F1. The results correspnd to the 73 words in the Senseal-2 lexical-sample
task (micro-averaged). The best F1 for ead feature-setis givenin bold.

From the overall results, we can derive theseconclusions:
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The syntactic featuresimprove signi cantly the results. Specially for
the high-precisionthresholds, the algorithms prot clearly from syn-
tactic features.

The bestF1 is readhed with the syntactic featuresand the 60%thresh-
old, improving the performanceof the whole set. This shavsthat some
Itering of syntactic featuresis required.

A high precision of 86.7% can be adieved for 26.4% of the testing
examples.

The secondmethod is basedon a decision-threshold (Dagan and ltai,
1994): the algorithm rejectsdecisionstaken whenthe di erence of the max-
imum likelihood amongthe competing sensess not big enough. For this
purpose,a one-tailed con dence interval was created so we could state with
con dence 1 that the true value of the di erence measurewas bigger
than a giventhreshold (named ). Asin (Daganand Itai, 1994),we adjusted
the measureto the amourt of evidence,and applied a 60% con dence inter-
val. For ead feature f and sensei, the lower bound (f eat ; sensg) was
calculated using the following formula:

N | 1 1
(f eat; ; sensg) = log(P———) Z — p—
jei Nij Nt isi Ntj

<

Where N¢; denotesthe frequencyof featuref with sensa, andZ; isthe
con dencecoe cien t from the normal distribution. Thus, for a newexample
to disanmbiguate, afeaturef is discardedfor asense when (f eat ; sensg) <

. The valuesof rangefrom 2 to 4. The results are shovn in table 1V.10.

In this experimert the cortribution of the syntactic featuresis smaller
than in table IV.9, although they help. The useof all the featuresallows for
a precisionof 93.7%and a coverageof 7.9%.

In the caseof AB, there was no straightforward way to apply the feature
selectionmethod. The application of the decision-thresholddid not yield
satisfactory results, thereforewe turned to using the support value returned
for ead decisionthat was made. We rst applied a threshold directly on
this support value, i.e. discarding decisionsmade with low support values.
A secondapproximation, which is the one reported here, applies a thresh-
old over the di erence in the support for the winning senseand the second
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Base+ IGR + GR Base

Prec. | Cov. F1 | Prec. | Cov. F1
2 63.2| 85.4 | 58.2 61.9| 84.4| 56.7
25| 70.7| 64.1| 55.2| 69.2| 62.6| 53.3
3 79.7| 39.0| 44.7| 78.7| 37.7| 43.1
35| 884| 205| 30.1| 885| 19.0| 28.3
4 93.7 79| 13.7| 935 71| 12.4

Table 1V.10: Decisionthreshold with DL on two feature sets: basicfeatures,
and extendedset with syntactic features(IGR + GR). Micro-averagedper-
formancefor eadr for the 73 words in the Senseal-2 lexical-sample. In
bold, the best F1 for eat feature-set.

Basic+ IGR + GR Basic

Prec. | Cov. F1 Prec. | Cov. F1
60.3 | 100 | 60.3 || 59.4 | 100 | 59.4
66.7 | 845 | 61.1 65.6 | 83.5| 59.7
685 | 775 | 59.8 || 67.7 | 76.3 | 58.6
70.4 | 70.0 | 58.0 || 69.5 | 69.4 | 56.9
719 | 619 | 55.0| 70.6 | 61.4 | 53.7
745 | 451 | 46.3 || 73.3 | 435 | 44.4
749 | 384 | 416 | 74.0 | 37.7 | 405
75.0 | 335 | 376 | 73.1 | 320 | 354
740 | 26.7 | 31.2 | 725 | 275 | 31.3
72.0 | 19.3| 233 | 71.0 | 18.6 | 22.3
92.1 | 0.9 1.6 0.9 | 85| 09
100 0.8 1.6 0.8 | 96.7 | 0.8

Table IV.11: Application of AB with decisionthresholds. Performanceon
intermediate points for basicand extendedfeatures. Micro-averagedperfor-
mancefor the 73 words in the Senseal-2 lexical-sample. In bold, the best
F1 for ead feature-set.

winning sense.Still, further work is neededin order to investigate how AB
could abstain in the lesscon dent cases.

The resultsfor somerepresetativ e points aregivenin table IV.11. There,
we can seethat the F1 value improves signi cantly for syntactic features,
reducinga little the coverage.Howe\er, the systemis not ableto read high
perceniage values, except for a handful of cases. As we said, other means
should be exploredto adapt AB to this task.
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Precision

I I
DL threshold basic
DL threshold basic+synt -+ -
DL feat.sel. basic
DL feat.sel. basic+synt - -- - --
AB basic 44— _|
AB basic+synt - ? --

50 | | | |
0 20 40 60 80 100

Coverage

Figure 1V.3: Graph of systemsbased on precision/coverage trade-o in
Sensesl-2 data.

The results of the three experimerts are better illustrated in the pre-
cision/coveragegraph in gure IV.7. The gure rewvealsan interesting be-
havior for dierent coverageranges. In the high coveragerange, AB on
basic+syntactic features attains the best performance,which is consistart
with the resultsin sectionIV.6. In the medium coveragearea, the feature
selectionmethod for DL obtains the best results, also for basic+syrnactic
features. Finally, in the low coverageand high precision areathe decision-
threshold method for DL is able to read precisionsin the high nineties, with
almostno prot from syrtactic features.

The two methodsto raiseprecisionfor DL arevery e ective. The decision-
threshold method obtains constart increasein performanceup to 93% preci-
sion with 7% coverage. The feature selectionmethod attains 86% precision
with 26% coverageusing syntactic features,but there is no further improve-
mert. In this caseDL is able to obtain extremely good accuracyrates (at
the cost of coverage)restricting to the use of the most predictive features.
A possibleimprovemen of this approad would be to combine the outputs
of both DL methods, covering more caseswith high precision. On the con-



110 New feature types: syntactic and semantic knowledge

trary, we have had problemsin adjusting the AB algorithm for obtaining
high-precisionpredictions.

The gure alsoshows, for coverageover 20%, that the syntactic features
consistetly allow for better results, con rming that syrntactic featuresim-
prove the results of the basicset.

V.8 Semantideatures

In this section we will explore the cortribution of semaric features. The
Semcorcorpus provides the synsetsfor all the cortent words in the con-
text. Using this information, we devisedsomeexperimerts in order to know
whether we can take advantage of this information. The idea is that if we
could disambiguate somewords in the cortext, thesewould provide addi-
tional cluesto disambiguate other words in the samecontext.

The assumptionsof this experimert aredi cult to meetin areal setting.
Therefore, we did not de ne the featuresas disambiguated collocations but
as\bag-of-words", becausewe can supposethat it would be easierto disam-
biguate someindeterminate words in a near cortext than guessingexactly
the synsetsof the local context.

Thus, the semaric featureswe will usein the next experimerts are based
on the WordNet hierardhy. They will represeh synsets,sematic les (see
experimert on coarsesensesn sectionll1.5.6), and hypernyms of the words
in the cortext, in a \bag-of-words" way. This is the completelist:

Synset: Synsetsof ead word in the context.

Semattic- le: Semaric les of ead word in the cortext.

Hypernym: Immediate hypernyms of the words in the cortext.
Ancestor(3): Hypernyms of the words in the cortext, up to distance 3.

Ancestor: Hypernyms of the words in the cortext, up to unique begin-
ners.

As we will seein the next section,only the synsetsand relativesof nouns
have beenusedin someexperimerts.
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PoS Basic + Synsets | + Sem. Files | + Hypernyms | + Anc. (3) + Anc.
Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov.
Adj. 82 100 82 100 | 84* 100 82 100 84 100 85 100
Adv. 72 100 | 72 100 72 100 70 100 | 69* 100 70 100
Nouns 80 99 80 99 80 100 | 81 100 80 100 80 100
Verbs 58 92 57 94 58 93 57 96 | 55* 97 | 56* 97
| Overall | 70 | 97 | 70 | 98 | 71 | 97 | 70 | 98 | 69* | 99 | 69 | 99 |

TablelV.12: Resultsonthe word-setA in Semcoradding semairtic featuresto
the basicset. Precision(Pr.) and coverage(Cov.) showvn. The *' character
after the precision indicates that the di erence with respect to the basic
feature setis signi cant. The best precisionper row is givenin bold.

IV.9 Perfomanceof semantideatures

In orderto usethe Semcorcorpus,we go bad to the \Semcor&DSQO" setting
(cf. sectionll1.3.3.1). For our rst experimert, we applied the DL algorithm
on the A word-set (cf. sectionlll.3.1), adding the new featuresto the basic
feature set descrited in section111.4.1. We added one feature type eah
time, and evaluated the precisionand coverage. The results are illustrated
in table IV.12. The best precisionfor eat row (PoS and Overall) is givenin
bold. The *' character after the precision gure indicatesthat the di erence
of the result with respect to the basic feature set is signi cant accordingto
the Studert's t-test (cf. sectionll.5.2).

The table shovsthat only sematiic les improve the precisionof the basic
set, but accordingto the t-test, the 1-point di erence is not signi cant overall.
The test is positive only for adjectives. The other featuresdo not improve
the results. All the featuresbasedon hypernyms improve the coverage,but
not the precision. Somereasonfor theselow results are the following:

1. The DL algorithm does not take prot from these features because
it focusesonly in the best evidence. As we noticed in section V.6,
algorithms basedon the combination of features,like AB, may be better
suited to scaleup from basicfeatures.

2. The WordNet hierardvy is richer for nounsthan from other categories.
Therefore,oneoption is to useonly the nounsin the cortext to de ne
semairic features,in order to reducethe noise.
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3. Local featuresobtain usually better precisionthan \bag-of-words" top-
ical features(cf. sectionll1.5.3). This implies that normally they have
more weight in the decision, but there are some casesin which we
may have to rely on the topical context (e.g.: the method in chap-
ter VI, where examplesare obtained automatically substituting the
target word by a relative). Therefore,even if the results for the combi-
nation of basic features(local + topical) do not improve, it would be
interesting to know whether the new features can improve the results
of the topical setalone.

Taking thesefactors into accourt we designednew experimerts. We did
not explore exhaustiwely all the cases,becausethe low results of the tests
made us think in a better approat for using the WordNet hierarchy for
WSD: selectionalpreferencegsection IV.10).

We report herethe results obtained applying the NB algorithm (cf. sec-
tion 11.4), using only the nounsin the cortext, and adding the featuresto
the topical set. For this setting we measuredonly the results with the hier-
archical features (hypernyms ancestors(3), and ancestors). We also tested
other combinations, but the di erencesin the results were small. We think
that the results of this experimert are enoughto re ect the cortribution we
can expect for this kind of semattic features.

Table 1V.13 illustrates the precision and coverage achieved by NB for
the di erent feature sets. The best precisionfor ead line (PoS and overall)
is given in bold. The * character indicates signi cance of the Studert t-
test. The results shav that hypernym-basedfeaturesimprove the precision
in one point, and accordingto the t-test, that di erence is signi cant for
the setsAncestor and Ancestor(3). We can seethat the di erence in overall
precisionis small; and only adjectivesimprove clearly their performance(2%-
6% recall). We analyzedthe results of the two adjectivesin the set, and all
the improvemen was due to the word long (193 examplesin Semcor). If we
examinewords with other PoS, we seethat the di erences are very low, and
the t-test is negative in almost all cases.

All in all, the experimerts suggesthat other ways shouldbe tried to ben-
et from thesefeatures. Instead of the \bag-of-words" approad, the use of
dependencyrelations seemsa better way to explore semartic generalization,
aswe will seein the next sections.Howeer, the experimerts were performed
on Semcor,which meansthat there werefew examplesto train, but alsothat
the systemwould be applicableto all the words that appearin Semcor. As
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PoS Topical + Hypernyms | + Ancestor(3) + Ancestor
Prec. | Cov. Prec. Cov. Prec. Cov. Prec. | Cov.
Adj. 82 100 84 100 87* 100 88* 100
Adv. 67 100 67 100 67 100 67 100
Nouns 79 100 80* 100 80 100 80 929
Verbs 54 100 54 100 55* 100 54 99

| Overall | 67 | 100 | 68 | 100 | 68* | 100 | 68* | 100 |

Table 1V.13: Results with the NB method on the word-set A in Semcor,
adding semaric featuresto the topical set. Only synsetsof nounsused. The
“*' character after the precisionindicatesthat the di erence with respect to
the topical feature setis signi cant. The best precisionper row is given in
bold.

we have seenin the Senseal literature (cf. chapter 11), the all-words systems
perform signi cantly lower than lexical-samplesystems,and it is not easyfor
them to overcomethe MFS baseline.

V.10 Leaningof selectiongbreferences

Selectionalpreferencegry to capture the fact that linguistic elemers prefer
argumerts of a certain semaitic class;e.g. a verb like eat prefersas object
edible things, and as subject animate ertities, asin, (1) Shewas eating an
apple Selectionalpreferenceget more complexthan it might seem.E.g. (2)
The acid ate the metal, (3) This car eats a lot of gas (4) We ate our savings
etc.

Corpus-basedapproadies for selectional preferencelearning extract a
number of relations (e.g. verb/subject) from large corpora and usean algo-
rithm to generalizefrom the set of nounsfor eath verb separately Usually,
nounsare generalizedusing classeqconcepts)from a lexical knowledgebase
like WordNet.

IV.10.1 Selectionapreferencanodels

Before we descrike our approad, we will explain the terminology we use.
We say concept and classto refer to the synsetsin WordNet. Synsetsare
represeted as setsof synoryms, e.g.: ffood, nutrientg. When a concept is
taken as a class it represets the set of synsetsthat are subsumedby this
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synsetin the hierarchy. A word sensen WordNet is a word-conceptpairing,
e.g.: giventhe conceptsa=f chicken, poulet, volailleg and b=f wimp, chicken,
crybabyg we cansay that chicken hastwo word sensesthe pair chicken-aand
the pair chicken-b In fact the former is sensel of chicken (f chicken,g), and
the later is sense3 of chicken (f chickensg). For the sake of simplicity, we
also say that f chicken, poulet, volailleg represets a word senseof chicken.
We can seethe four senseof chickenin WordNet 1.6in gure 1V.4.

Word: chicken
Sensel => fchicken, poulet, volaille g
Sense2 => fchicken, Gallus gallus g

Sense3 => fwimp, chicken, crybabyg

Sense4 => fchicken g

Figure IV.4. Sensesof chicken and correspnding synsets (concepts or
classes)n WordNet 1.6.

In our approad, the model is trained using subject-verb and object-verb
assaiations extracted from Semcor. The syntactic relations were extracted
using the Minipar parser. A peculiarity of this exerciseis the useof a sense-
disanbiguated corpus,in cortrast to usinga large corpusof ambiguouswords.
This corpusmakesit easierto comparethe selectionalpreferencesobtained
by di erent methods. Newertheless,the approad can be easily applied to
larger, non-disanbiguated corpora.

We have extended Resnik's selectional preferencemodel (Resnik, 1992,
1997) from word-to-class(e.g. verbs - nominal concepts)to class-to-class
(e.g. verbal concepts- nominal concepts). This model emergesas a result of
the following obsenations:

Distinguishing verb sensescan be useful. The four examplesfor eat
presened in the beginning of section V.10 are taken from WordNet,
and eat correspndsto a di erent word sense:example(1) is from the
takein solid food sense(2) from the causeto rust senseand examples
(3) and (4) from the useup sense.

If the word sensesof a set of verbs are similar (e.g. word sensesof
ingestion verbs like eat, devour, ingest, etc.) they can have related
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selectionalpreferencesand we can generalizeand make a classof verbs
sharethe sameselectionalpreference.

Our formalization distinguishesamongverb sensesthat is, we treat ead
verb senseas a di erent unit that has a particular selectional preference.
From the selectionalpreference®f singleverb sensesye alsoinfer selectional
preferencedor classesf verbs. For that, we usethe relation betweenword
sensesand classesn WordNet.

Summarizing, we want to model the probability of a nominal concept
giventhat it is the subject/ob ject of a particular verb (word-to-clasy, a verb
sensgword sense-to-clasy or a verbal concept(class-to-clas$. We will now
explain the three modelsin turn.

We have to notice that the modelswe will descrite now do not represeh
probabilities in the strict sensebut heuristic weights that we will represenh
with the symbol W. This happensbecausdn our model we will assumethat
a conceptand its hypernym are independert, which is not real. This allows
usto de ne easilyweighted class-to-clasgelationsfor all conceptsfrom a few
tagged examples,but at the cost of losing the support of a well-established
probabilistic distribution. The validity of our approad will be testedin the
WSD exercise.

We will apply this notation in the description of the models: v standsfor
a verb, cn (cv) standsfor a nominal (verbal) concept, cn; (cv) stands for
the conceptlinked to the i-th senseof the given noun (verb), rel could be
any grammatical relation (in our caseobject or subject), standsfor the
subsumptionrelation, fr standsfor frequencyand fr for the estimation of the
frequenciesof classegwe will useestimatedfrequenciedbecauseof the sparse
data in Semcor,the estimation method is preseted in sectionlV.10.2).

The models will be illustrated with an example: the object relation be-
tweenthe nominal conceptf chicken,g and the verb eat.

IV.10.1.1 Word-to-classmodel: W (cnjjrel v)

The weight of the conceptf chicken,g being the object of eat dependson
the probabilities of the conceptssubsumed-g and subsumingf chicken,g
being objects of eat. For instance,if chicken; (rst senseof chicken) newer
appearsasan object of eat, but other word sensesinder its hypernym f food,
nutrientg do, W (f chicken;gjobject eat) will be higher than 0.

Formula IV.1 shavsthat for all conceptssubsumingcn; the probability of
cn; giventhe more generalconcepttimes the probability of the more general
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conceptbeing a subject/ob ject of the verb is added. The rst probability is
obtained dividing the estimated classfrequenciesof cn; with the estimated
classfrequenciesof the more generalconcept. The secondprobability is cal-
culated dividing the estimated frequencyof the generalconceptoccurring as
object of eat with the number of occurrencesof eat with an object. The es-
timation of the frequenciesof the classewill be descriked in sectionlV.10.2.

X
W (cnjjrelv) = P(cnjjcn)  P(cnjrelv) =

X fr(cni;en)  fr(cnrelv)
cn cn; T/\r(cn) fr(relv)

(IV.1)

IV.10.1.2 Sense-to-classiodel: W (cnijrel v;)

Using a sense-taggea@orpus, sud as Semcor,we can compute the weight of
the di erent sense®f eat having as object the classf chicken;g. We usethe
formula IV.1 for eat senseof eat separately In this casewe have di erent
selectionalpreferencedor eat senseof the verb (v;): W(cnjjrel v;).

IV.10.1.3 Class-to-clasmodel: W (cnijrel cv)

We compute the weight of the verb classesassaiated to the sensef eat
having as object f chicken,g, using the probabilities of all conceptsabove
f chicken,g being objects of all conceptsabove the possiblesense®f eat. For
instance, if devour never appearedon the training corpus,the model could
infer its selectionalpreferencefrom that of its superclassfingest, take ing.
Formula IV.2 showvs how to calculatethe W value. For ead possibleverb
concept(cv) and noun concept(cn) subsumingthe target concepts(cn;, cv;),
the probability of the target conceptgiven the subsumingconcept (this is
donetwice, oncefor the verb, oncefor the noun) times the probability the
nominal conceptbeing subject/ob ject of the verbal conceptis added.

X X
W (cnijjrelcy) = P(cnijecn)  P(cvijev) P(cnjrelcv)
cn cnj cv qyj

X X fr(en;en)  fr(ev;ev)  fr(cnreley)
cn cnjcv oy f'\r(cn) f'\r(cv) fr(relcv)

(IV.2)
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IVV.10.2 Estimationof classfrequencies

Frequenciesfor classescan be courted directly from the corpus when the
classis linked to a word sensethat actually appearsin the corpus, written
asfr(cn;). Otherwisethey have to be estimated using the direct courts for
all subsumedconcepts,written asfr(cn;).

Formula 1V.3 shows the estimation for the nominal classcn. All the
courts for the subsumedconcepts(cn;) areadded,but divided by the number
of classedor which cn; is a subclass(that is, all ancestorsin the hierarcy).
This is necessaryto guarartee the following:

P(cnjcn) =1

cn cn;

Formula IV.4 shaws the estimated frequencyof a conceptgiven another
concept. In the caseof the rst conceptsubsumingthe second,t is equalto
0; otherwisethe frequencyis estimatedasin formula 1V.3.

Formula IV.5 estimatesthe courts for [nominal-conceptrelation verb]
triples for all possiblenominal-concepts,which is basedon the courts for
the triples that actually occur in the corpus. All the courts for subsumed
conceptsare added, divided by the number of classesn order to guarartee
this relation:

P(cnjrelv) =1

cn

Finally, formula IV.6 extendsformula IV.5 to [nominal-conceptrelation
verbal-concept]in a similar way. We can seean examplefor f'r(cnrelv) in
gure 1V.6.

V.11 Evaluatiorof selectiongbreferences

The acquired preferencesill be tested on a WSD exercise.Our goalin this
experimernt will be to choosethe correct word sensefor all nouns occurring
as subjects and objects of verbs, but the method could also be usedto dis-
ambiguate the verbs. The algorithm selectsthe word senseof the noun that
is belowv the strongestnominal classfor the verb, verb sense,or verb class
(depending on the model). When more than one word senseis belov the
strongestclass,all are selectedwith equalweight.
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1
r(cn) = ——  fr(cm V.3
(cn) e on Classegcn) (cn) (IV-3)
8 p 1 ,
< ————  fr(cn) if cny cn
f¥(cn;cn) = cnj cni classes(cn; ) eny) | _ (1IV.4)
-0 otherwise
1
fr(cnrelv) = = fr(cnrel V.5
( v) e on Classegcn) (enrelv) (1V-5)
X X 1 1
r(cnrelcv) = r(cnirelcv
fr ( lcv) fr( lcv)
o cnov on Classegcn)  classeqcv)
(IV.6)

Figure IV.5: Estimation of frequencies.

Occurrencesof eat in the corpus:

{ eat - object - fchickeny, ...g
{ eat - object - fporky, ...g

Subsumption relations from WordNet:

{ fchickeny, ...g ffood;nutrient; :::g
{ fporky, ...g ffood;nutrient; :::g

Estimation table:

fr fY
fchickeny, ...g 1 05
fporky, ...0 1 05

ff ood;nutrient; g 0 1

Figure IV.6: Example of estimation of frequencyfor the casefr(cnrelv);
whererel = object, v = eat, and cn = ff ood;nutr ient; :::g.
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In order to apply the method, we needa corpusto learn the preferences,
and another for testing. We can usean untagged corpusfor learning, intro-
ducing all the possibletags for ead relation extracted. For this approad to
be useful, we would require a big corpus, in order to reducethe noiseof the
ambiguity. This is the usual approad for selectionalpreferencelearning in
the literature. Another option is to use a corpus of sense-taggedelations,
but sud a corpusis dicult to obtain. We already have the Semcorcorpus
available, and we have usedit in previous experimerts, therefore we opted
for this approad. We used Semcorto learn the preferences,and also for
testing (via cross-alidation).

The fact that we rely on a generalall-words corpus, and not in a list
of taggedinstancesfor ead target word makesit di cult to compete with
supervisedsystems,and even with the MFS baseline. This method is closer
to the unsupervisedapproad, and should be seenin that light.

Two experimerts will be descriked in this section. We will rely on the
\Semcor&DSQO" setting (cf. section|l11.3.3.1). For the lexical-sample,we
will useonly the 8 nounsin the set A (cf. sectionlll.3.1.1). We will ap-
ply 10 fold cross-alidation, learning the preferencedrom 90% of the data,
and disambiguating the remaining 10%for ead iteration. For the all-nouns
experimenrt, four les previously usedin the baselineexperimerts (cf. sec-
tion 111.5.7) were disambiguated. In this case,to disanbiguate ead le, we
trained the selectionalpreferenceon the rest of Semcor.

As we said, only nounsoccurring as subjects and objects of verbscan be
disanmbiguated. We can seein table 1V.14 the proportion of exampleswhere
the target nounshave beenmarkedassubject or object (for the lexical sample
experimert). Note that only 19%of the occurrencesf the nounsare objects
of any verb, and 15% are subjects. This implies that the method by itself is
not enoughfor full-coverageWSD. In order to extend the model we may:

Useother relations besidessubject and object.
Integrate this knowledgewith other information sources.

Usean alternative parserthat could help to detect morerelations. We
have obsened that many object/subject are not identi ed.

Newertheless,the following experimerts will shov us whether the infor-
mation learnedin the form of selectional preferencescan be another valid
sourceof knowledgeto be integrated in a WSD system. The other test we
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Object Subject
Nouns Senses | Freq. Freq. % | Freq, %
accoun t 10 27 8 | 29.6 3| 111
age 5 104 10 9.6 9 8.7
churc h 3 128 19 | 148 10 7.8
dut y 3 25 8 | 32.0 1 4.0
head 30 179 58 | 32.4 16 8.9
in terest 7 140 31| 221 13 9.3
mem ber 5 74 13 | 17.6 11 | 14.9
people 4 282 41 | 14.5 83 | 294
Ov erall 67 959 188 | 19.6 146 | 15.2

Table1V.14: Frequenciesand poliseny of the lexical samplenouns,together
with the relations extracted from Semcorby Minipar.

Object Subject
Method Prec. | Cov. | Rec. || Prec. | Cov. | Rec.
Random 19.2| 100 | 19.2 19.2| 100 | 19.2
MFS 69.0| 100]| 69.0 69.0| 100 | 69.0

Word2class| 66.9| 86.7| 58.0| 69.8| 79.4| 55.4
Class2class| 65.7| 97.3| 64.0| 68.3| 98.6| 67.3

TablelV.15: Performanceof selectionalpreferencemodelson the nounsfrom
setA in Semcor.Randomand MFS baselinesand two models: word-to-class
and class-to-class.

will make is to measurewhether the extendedclass-to-classnodel is able to
generalizewell and improve the results of the word-to-classmodel.

Table IV.15 shows the overall results for the lexical sample experimert.
Togetherwith the two baselinegrandom and MFS), the precision,coverage,
and recall of the word-to-classmodel and the class-to-classre given'.

The classicword-to-classmodel gets slightly better precisionthan class-
to-class,but class-to-clasgs near complete coverageand thus gets the best
recall. This indicatesthat the algorithm is able to generalizewell and learn
useful information. The recall is above the random baseline, but slightly
belov MFS. We have to notice that with so few points of data, the MFS
baselineis di cult to beat. Another factor is that there is no smaothing or

lWe decidednot to include the sense-to-classnodel, becauseit requiresa sense-tagged
corpus, and at this point we think that it is more interesting to study the performance
of the class-to-classmodel, which is learnable from untagged corpora and can obtain
preferencesfor verb sensesot seenin the corpus.
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Word Object Subject

Freq. | Prec. | Cov. || Freq. | Prec. | Cov.
accourt 8| 375| 100 3| 33.3| 100
age 10| 77.8| 90.0 9| 66.7| 100
church 19| 63.2| 100 10| 60.0| 100
duty 8| 25.0| 100 1 0| 100
head 58 | 74.1| 100 16| 56.2| 100
interest 31| 55.2| 935 13| 154 | 100
member 13| 38.5| 100 11| 36.4| 100
people 41| 821 951 83| 86.4| 97.6
Overall 188 | 65.7| 97.3 146 | 68.3| 98.6

Table IV.16: Resultsof the class-to-classnodel per word in Semcor(set A).

Object Subject
Method Prec. | Cov. | Rec. || Prec. | Cov. | Rec.
Random | 26.5| 100 | 26.5 29.6| 100 | 29.6
MFS 69.8| 100 | 69.8 79.0| 100| 79.0
W2C 51.7| 80.1| 414 69.9| 85.6| 59.8
ca2cC 53.2| 95.0| 50.5 70.5| 98.1| 69.2

TablelV.17: Performanceof selectionalpreferencemodelson the nounsfrom
4 Semcor les.

cut-o value involved, which forcesthe algorithm to decidewith low con -
dence. Table IV.16 shaws the results for the class-to-classmodel per word,
wherewe can seethe number of examplesfor eat target word, the precision,
and the coverage. Note that the systemis tested using cross-alidation, and
with theseamourts of examples,most of the time the preferenceshave to
be generalizedusingwords di erent to the target. We can seethat normally
better precisionis obtained for words with higher number of examples,like
people or head.

To concludethis section, table V.17 illustrates the results of the selec-
tional preferencemodelsin 4 Semcor les. The averagedperformancevalues
are given for the two baselinesand the two models. We seethat the class-to-
classmodel obtains better precisionand recall than the word-to-classmodel,
showing that it is better suited for this task. However, the losswith respect
to the MFS baselineis biggerthan in the previous experimert.
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V.12 Conclusions

We have performedse\eral experimerts throughout the chapter for di erent
types of features. We will rst descrike the conclusionsderived from eadh
group of experimerts, and nally we will summarizeour overall conclusions.

Syntacticfeatureson Semco and DSO

Our rst experimerts were performed on Semcorand DSO, with the DL
method. In Semcor,the syntactic features achieve lower performance(in
precisionand coverage)than the basic set, and the combination of the two
sets (basic and syntactic) does not help to improve the results. In DSO
there is a small improvemen adding the syntactic featuresto the basic set
(0.3% precision,0.1 %coverage). Verbsare the most bene ted from syrtactic
knowledge (0.5% precision, 0.1% coverage). Taken separately the syrtactic
feature set improvesthe precisionof the basicfeatures, but the coverageis
still low.

In orderto know the reasonfor this low performance(speciallyin Semcor),
we analyzedthe behavior of the di erent featuresseparately We applied the
DL algorithm using only one feature ead time, and we evaluated the preci-
sion and coverageof eat pieceof evidence.We obsened that the syntactic
featuresadieved good precision, but the recall was very low in comparison
with basicfeatures,and they could be applied only in a few cases.Howe\er,
somesynactic featuresadcieved comparatively good recall for verbs, spe-
cially ngrams, suggestingthat somesubcategorizationinformation had been
acquired.

For further analysis,we focusedon somewordsin the Semcorexperimen,
and analyzedthe learneddecisionlists. Theseare the main conclusions:

1. Syntactic featuresusually have fewer occurrencesin the training cor-
pus than basicfeatures,and they rank low in the decisionlists. Even
syrtactic featureswith high frequencyin training usually have basic
features above them, which suggestthat the information may be re-
dundart.

2. In the caseof words with a dominant sense,somesynactic features
that appear frequertly and do not carry much information (e.g. the
presenceof a determiner linked to a noun) can introduce noise and
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point strongly to the most frequert sense.This happensalsowith non-
syrtactic features,but in a lessharming scalebecausehey comprisea
more reducedand cortrolled set.

3. The parserfails to detect many dependenciesand commits someerrors,
which a ects the precisionand specially the coverage.

Syntacticfeatureson the Senseval-2apus

For our next setting, the Senseal-2 dataset, we decidedto apply alsoanother
ML method: AB. We expectedthat this would alleviate the e ect of the two
former problemsin the previousexperimerts on syrtactic features. But rst,
we analyzedthe performanceof the syrtactic featureswith DLs. Surprisingly,
the results were signi cantly better in this corpus. Syntactic featuresalone
obtained better F1 value than the MFS baseline. The F1 value was much
higher in this experimert than in the DSO task, even whenthe recall of the
MFS baselinewas higher in DSO.

In our next experimert, we testedthe combination of basicand syrtactic
featuresusing the two ML methods. We extracted theseconclusions:

AB is able to outperform DL in all casesgexceptfor local features.
Syntactic featuresget worseresultsthan local features.

Syntactic features prove to be usefulin the combination. DLs prot
from the additional syntactic featuresbut the di erence is only statis-
tically signi cant for verbs. On the other hand, AB attains signi cant
improvemen (1.8% overall, 2.7%for verbs).

Syntacticfeaturesand high precisionsystems

Finally, we testedthe e ect of syrtactic featuresfor high precisionWSD. We
analyzedtwo systemsbasedon DL (feature selectionand decision-threshold),
and onebasedon AB (decision-threshold). Theseare the main obsenations:

Synactic featureshelp to improve the F1 result of the basicsetin all
cases.
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Adjusting the methods to a minimum loss of coverage(discarding the
most di cult testing examples),the overall F1 improvesfor the three
methods.

The methodsbasedon DL read 93%precisionat 7% coverage(decision-
threshold), and 86%precisionat 26%coverage(feature selection). Syn-
tactic featuresare specially helpful for feature selection.

AB doesnot adieve high precision gures, but it obtains the highest
F1 scorein this setting, with 66.7%precisionand 84.5%coverage.

Semanticfeatures

Experimerts on thesefeatures,which were basedon synsetsof the words in
the cortext, did not achieve good performance. This feature set was de ned
using the WordNet hierarchy, and the information from the sematrtic- les.
The experimerts were performed on Semcor,which meansthat there were
fewexamplesto train, but alsothat the systemwould be applicableto all the
words that appearin Semcor.As we have seenin the Senseal literature (cf.
chapter 11), the all-words systemsperform signi cantly lower than lexical-
samplesystems,and it is not easyfor them to overcomethe MFS baseline.

The results shav that overall, the systemis able to improve the perfor-
mance of the topical feature set, using the NB algorithm. This could be
usefulwhen the local contexts are not reliable, as could happen with auto-
matically acquiredfeatures(cf. chapter VI). Another casewherethe recall
is improved is for adjectives,with a gain of 3% recall.

All in all, the experimerts suggesthat other ways shouldbe tried to ben-
et from thesefeatures. Instead of the \bag-of-words" approad, the use of
dependencyrelations seemsa better way to explore semartic generalization.

Selectionapreferences

We tested whether selectionalpreferencdearning could give us a better way
to use sematic information for WSD. The experimerts had the following
characteristics:

Extract object/subject relations between nouns and verbs, applying
the Minipar parser.
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Learn preference$rom the WordNet hierarchy usingtwo models: word-
to-class,and class-to-class.

Disambiguate nounsin the Semcorcorpus, via cross-alidation.

Our rst obsenation was that the coverageof the subjects and objects
wasvery low. Someways to addressthis would be by extracting other types
of relations, integrating selectionalpreferencesn a systemwith other types
of features, or using a more accurate parser. Howewer, we performed the
disanbiguation for the examplesthat we could obtain, to measurewhether
this information was useful. The two experimerts, which were performedfor
a sampleof nouns, and for all the nounsin four Semcor les, took usto the
following conclusions:

The class-to-classmodel obtains better recall than the word-to-class
model, with only a small lossin precision. Class-to-clasdearns selec-
tional preferencedor senseof verbsthat do not occur in the corpus,
via inheritance.

The recall of the class-to-classnodel getscloseto the MFS baseline.We
have to note that this is a hard baselinefor this kind of all-words sys-
tems, aswe have seenin our study of the literature (cf. sectionlV.2.2).

The preferencesare acquiredfrom a small set of taggedexamples,and
for somewordsthe resultsare very low. The wordswith more examples
to train seemto have better performance.

Apart from the low coverage,another limitation of this approad is that
no cut-o values or smaothing is applied, and the algorithm is forced to
make decisionswith few data. Applying a threshold could help to improve
precision. Another way we would like to exploreis the useof a big untagged
corpusto learn the preferences.We are also interestedin the performance
when disanmbiguating words with other PoS than nouns. Finally, we would
like to test these selectional preferencesn conbination with other feature
types,like the oneswe have beenexploring previously We think that despite
their low coverage,selectionalpreferencesvould help to improve the overall
performanceof the system,althoughit is not straightforward how to integrate
them in a supervisedsystem. One possibility would be to include the sense
chosenby the selectional preferencemodel in the feature set, in a fashion
similar to (Stevensonand Wilks, 1999).
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Overallconclusions

The goal of this chapter hasbeento analyzericher features,in orderto know
whetherthe e ort of extracting this knowledgeis usefulfor WSD. The types
of features we have analyzedin this chapter are divided in three groups:
syrtactic features,semaitic features,and selectionalpreferences.

For syrtactic features, the results shov that basic and syntactic fea-
tures cortain complemetary information, and that they are usefulfor WSD.
The cortribution of this type of feature is specially noticeablefor the algo-
rithm AB in the standard setting, and for DLs when applying the preci-
sion/coveragetrade-o .

Regarding semattic features, we have seenthat they could cortribute
slightly to improve the performanceof an all-words system. Howeer, the
\bag-of-words" approad doesnot seemto benet much from the WordNet
hierarchy. Instead, the generalizationof syntactic dependenciesusing Word-
Net o ers promising results, ashasalsobeenseenin?(Mihalcea and Faruque,
2004). Improved performancecould comefrom integrating selectionalprefer-
encestogether with other featuretypes,but this path hasnot beenexplored
in this dissertation.

2The system\SenseLearner" has beendescribed in section11.8.



V. CHAPTER

Sparse data problem and smoothing
techniques

V.1 Introduction

In the previous chapter we have studied the cortribution of di erent knowl-
edgesourcesto WSD. Now we will focuson the sparsedata problem, which
a ects sewral NLP techniquesthat estimate probabilities from real texts,
like statistical MT or text categorization. Both for NLP and WSD, most of
the ewverts occur rarely, even whenlarge quartities of training data are avail-
able. In supervised WSD, the dicult y of building a hand-taggedcorpus
makes the sparsedata problem one of the main barriers to adcieve higher
performance gures. Normally, for ead word there is only a handful of oc-
currenceswith sensetags. For example, if we take the word channe| we
seethat it appears5 times in SemCor,one of the few sense-taggeaorpus
for all-words: the rst sensehasfour occurrencesthe seconda single one,
and the other 5 sensesre not represeted. For a few words, more extensie
training data exists. Senseal-2 (Edmonds and Cotton, 2001) provides 145
occurrencesof channe| but still someof the sensesare represeted by only
3 or 5 occurrences.

Moreover, the ne-grained analysis of the cortext performed by most
WSD systemsrequiresthat we represen it by meansof many features,some
of them rare. The occurrencesof these features can be very informative,
and the estimation of rare-occurring featuresmight be crucial to have high
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performances.Thesescenarioswherethe dimensionality of the feature space
exceedghe number of examples,shown a big potertial for over tting.

Smoothing refersto the techniquesthat try to estimate the probability
distribution that approximatesthe onewe expectto nd in held-outdata. In
WSD, if all occurrenceof a feature for a givenword occur in the samesense,
the Maximum Likelihood Estimation (MLE) would give a 0 probability to the
other sense®f the word given the feature, which is a severe underestimation.
We will denotethesecasesas X/0, where X is the frequencyof the majority
senseand zerois the frequencyof the other senses.

For instance, if the word Jerry occursin the cortext of art only oncein
the training data with a given sense,doesit meanthat the probability of
other sensef art occurring in the cortext of Jerry is 0? We will seein
sectionV.6.3 that this is not the case,and that the other sensesare nearly
as probable. Our smaothing study will shaw for this feature of the word art
that the smaothed ratio should be closerto 1/1.

In this chapter, we follow the smaothing method proposedby Yarowsky
in his PhD dissertation (Yarowsky, 1995a),and presei a detailed algorithm
of its implemertation for the WSD problem, de ning someof the parameters
used,alongsidethe accoun of its useby three di erent ML algorithms: DL,
NB, and VSM (cf. sectionll.4). The impact of se\eral smoothing strategiesis
alsopreserted, and the results indicate that the smoothing method explored
in this work is able to make both statistically motivated methods (DL and
NB) perform at very high precisions,comparableand in somecasessuperior
to the best results attained in the Senseal-2 competition (cf. sectionll.7).
We alsoshow that a simple combination of the methods and a fourth system
basedon SVM (cf. section|l.4) attains the best result for the Senseal-2
competition reported so far. This systemwas submitted to the Senseal-3
competition, obtaining one of the top scores(cf. sectionll.8).

Another motivation for this work is the possibility to use smoothing
techniquesin bootstrapping approades. Bootstrapping techniques sud as
(Yarowsky, 1995b) have showvn that having good seedsjt would be possible
to devisea method that could perform with quality similar to that of super-
vised systems. Smoothing techniques could help to detect rare but strong
features,which could be usedas seeddor ead of the target word sensesin
the next chapter, we will apply the method preserted in (Leacack et al., 1998)
to obtain examplesautomatically by meansof the WordNet hierarchy. This
method could be extendedrelying on smaothing to obtain relevant features
for ead senseand using thesefeaturesasthe sourceof new examples.
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This chapter is organizedas follows. Related work on smoothing and
ensenblesof algorithms is summarizedin sectionVI11.2. SectionV.3 preselts
the experimertal setting, and the feature set is descrited in section V.4.
Section V.5 introducessmoothing of features, and sectionV.6 preselts the
speci ¢ algorithm with examples. SectionV.7 presertts the evaluation and
comparisonwith other systemsin Senseal-2, and sectionV.8 givesthe results
of the ocial Senseal-3 ewvaluation. Finally, the last section draws some
conclusions.

V.2 Relatedvork

Hoste et al. (2002) obsene that parameter optimization is a key factor in
WSD performance. They note that there are many interactions amongthe
feature space the learning examples,and the parametersof the ML method.
The optimization of theseinteractions per word would lead to better results
for a givenalgorithm. Our resultsshow that it is indeedthe case,and weaker
learning algorithms sud asDL, NB and VSM attain performancescloseor
superior to SVM with the help of appropriate smaothing techniques.

An important parameter that has to be estimated previously for some
disanmbiguation methods is the smaothing of feature frequencies.Algorithms
like DL or NB cannot handle O probabilities for a sensegiven a feature.
Although thesealgorithms have beenwidely usedin the literature (specially
in conbination with other methods, as we will descrite below), there are
few works that addressthis problem with speci ¢ techniques,and normally
simple default valuesare used.

Yarowsky (1995a), in his dissertation work, provided a study on ways
to estimate the distribution of ead di erent collocation in the model. His
method is basedon the meanvalue of accuracyin held-out data. In order
to better estimate X/0 and X/1 frequencies,the occurrencesin held-out
data are courted; the basicideais to assumethat all collocations with the
same sensedistribution in the primary training data have the sametrue
distribution. This approad is further re ned grouping featuresfor the same
feature type, target PoS, etc. and using log-linear interpolation with the
obsened points. He shaved that if primary training, test data, and held-out
data are similar, then the meandistribution will be a better estimation than
raw frequencies.This approad appliesideasfrom other smoothing methods
in the literature: the Good Turing algorithm (Good, 1953),and the Method
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of Deleted Estimation (Jelinek and Mercer, 1980).

Good (1953) mergesall the distributions that have the sameraw fre-
quencyin held-out data and estimatesthe smoothed probability applying a
measuredirectly on those courts. This method is normally usedin combi-
nation with others. The Method of Deleted Estimation (Jelinek and Mercer,
1980),linearly interpolateshigher-ordervalueswith lower-ordermodels. The
probability of a feature would depend on the probabilities of the componerts
in someextert, which is de ned by the parameter . This method alsouses
held-out data to estimate probabilities. From a broader perspective, Chen
(1996) provides a comprehensie description of diversesmaothing methods,
and its application to di erent NLP problems. He implemerts the above
descriked Method of Deleted Estimation, Katz smaothing (Katz, 1987),and
Church-Gale smoothing (Church and Gale, 1991);and compareshem to two
new methods deweloped for his dissertation.

Regarding the relation between smaothing and ML methods for WSD,
in (Ng, 1997), NB was applied using a simple method of smaothing, where
zero courts were replacedby the probability of the given sensedivided by
the total number of examples. This approad has been followed in other
experimerts with NB (Escuderoet al., 2000b). For our work, we usedthis
method asbaseline,and alsoin conmbination with the method we will descrike
in sectionV.6. In a more recent work (Lee and Ng, 2002),4 ML methods
(NB, AB, SVM, and DTrees)are applied separatelyto the Senseal-2 English
Lexical Sampledata. For NB, the probabilities are smaoothed using a simple
method (Laplace, \add one"). They report better results with SVM than
the best Senseal-2 result (65.4% vs. 64.2%). They have not attempted
to combine the di erent methods, and no parameter estimation has been
performedfor the individual classi ers.

Togetherwith the smaothing algorithm, in this chapter we will alsotest
the integration of di erent ML methods in combined systems, which has
been shovn to be one of the most successfulapproates in the Senseal
competitions. We already descriked in section|l.7 the JHU-English system
(Yarowsky et al., 2001),which consistedon voting-basedclassi er conbina-
tion, and obtained the best performancein the English lexical-sampletask.
In their training models, they assignweights to di erent features,depending
on the type of feature and the distanceto the target word. This systemis
further re ned in (Cucerzanand Yarowsky, 2003),including new algorithms
like the Mixture Model (MM), and applying a Itering processto idertify
the relevance of surrounding words to disambiguate the target. This last
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paper reports a signi cativ e increaseof the resultsfor NB and Mixture Mod-
els when using feature-weights and Itering. The nal results outperform
in 2.3% the best Senseal-2 submission(66.5% Vs 64.2%). In section V.7,
someof theselatter methods have beencomparedwith our nal algorithm
for ewvaluation in the Senseal-2 setting.

Finally, anotherapproad is the conmbination of di erent linguistic knowl-
edgesourcesto disambiguate all the words in the context, asin (Stevenson
and Wilks, 2001). In this work, they integrate the answers of three "partial
taggers"basedon di erent knowledgesourcesn a feature-vector represeta-
tion for ead sense.The vectoris completedwith information about the sense
(including rank in the lexicon), and simple collocations extracted from the
cortext. The TIMBL memory-basedlearning algorithm is then applied to
classifythe new examples.The "partial taggers" apply the following knowl-
edge: 1) Dictionary de nition overlap (optimized for all-words by meansof
simulated annealing), 2) Selectionalpreferenceqbasedon synactic depen-
denciesand LDOCE codes), and 3) Subject codes from LDOCE applying
the algorithm by (Yarowsky, 1992).

V.3 Experimentaketting

For the main experimerts in this chapter we applied the \Sensewal2" setting
(cf. section111.3.3.3), with a preprocessingstage for the multiwords and
phrasal verbs (processdescriked in sectionl11.3.2). The preprocessis a nec-
essarystep in order to achieve competitive performancewith other systems
on the Senseal-2 lexical-sampletask.

We relied on dierent ML methods in order to test the e ect of the
smoothing techniques: DL, NB, VSM, and SVM. We also constructed an
ensenble of systems(by voting) to seehow good wasthe nal systemin the
Senseal framework.

We usedthe training part of the Senseal-2 corpuswith cross-alidation to
estimatethe C parameterfor the SVM algorithm, and to obtain the smoothed
frequenciesfor the features. For the set of experimerts in evaluation, the
systemsare trained on the training part, and tested on the testing part.

Finally, we report hereour resultsin the Senseal-3 competition usingthe
approad presetied in this chapter. The \Sensewal3" experimertal setting is
givenin sectionl11.3.3.5.
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V.4 Features

From the experienceof the two previous chapters, we de ned a new feature
setthat included syntactic dependencyinformation. We alsointroducedfea-
tures not tested previously asthe previous noun/verb/adj/adv in the sen-
tence. With this augmerted feature set we expectedto obtain moreprot of
the smaothing procedure. The featurescan be grouped in four main sets:

Local collo cations : Bigrams and trigrams formed with the words around
the target. Thesefeaturesare constituted with lemmas,word-forms, or PoS
tagst. Other local features are those formed with the previous/posterior
lemma/word-form in the corntext for ead main PoS. E.g. The feature
\prev.V_lem stand" would indicate that the target word is precededby the
verb stand

Syntactic dependencies: Synactic dependencieswere extracted using
heuristic patterns, and regular expressiongle ned with the PoStags around
the target?. The following relationswereused: object, subject, noun-madi er,
preposition, and sibling. E.g. list OBJ petition.

Bag-of-w ords features: We extract the lemmasof the cortent words in
the whole context, and in a 4-word window around the target. We also
obtain saliert bigramsin the cortext, with the methods and the software
descriked in (Pedersen,2001). e.g. the feature context.bigr visionary eyes
would expresghat visionary eyeshasbeenfoundto berelevant for the target
word, and has beenseenin the given cortext.

Domain features : The WordNet Domainsresourcewasusedto idertify the
most relevant domainsin the context. Following the relevanceformula pre-
serted in (Magnini and Cavaglia, 2000), we de ned 2 feature types: (1) the
most relevant domain, and (2) a list of domainsabove a prede ned thresh-
old®. Other experimerts using domainsfrom SUMO, the EuroWordNet top-
ontology, and WordNet's Sematic Fields were performed,but thesefeatures
were discardedfrom the nal set. The domain featureswere only usedfor
the Senseal-3 experimerts.

1The PoStagging was performed with the fnTBL toolkit (Ngai and Florian, 2001).

2This software was kindly provided by David Yarowsky's group, from Johns Hopkins
University.

3The softwareto obtain the relevant domainswaskindly provided by Gerard Escudero's
group, from Universitat Politecnica de Catalunya
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V.5 Featureype smathing

We have already seenin the introduction that estimating X/0 featureswith
MLE would yield a probability P(sjf) = 1 for the majority senseand a
probability P(sjf) = 0 for the minority senseswhich is an underestima-
tion. Featureswith X/0 courts are usual when the training data is sparse,
and thesevaluesmust be smoothed beforethey are fed to somelearning al-
gorithms, sudh as DL or NB, asthey lead to undetermined valuesin their
formulations.

Other distributions, sud as X/1, X/2, ... can also be estimated using
smoothing techniques. Yarowsky (1995a) arguesthat the probability of the
secondmajority sensean X/1 distributions would be overestimatedby MLE.

For intermediate casessud as X/2, X/3, etc. it is not clear whether the
e ort of modeling would be worth pursuing. For higher frequencies,using
the raw frequencycould be good enough. In this work we focusedin X/0
and X/1 distributions.

The smoothing algorithm shavn here (which we will call feature-type
smaothing) follows the ideas of Yarowsky (1995a). The main criteria to
partition the training data hasbeento useraw frequenciesand feature types
(e.g. prev.N_wf, feature type that represets the rst noun word-form to the
left of the target). Raw frequencyis the most important parameter when
estimating the distribution, and joining featuresof the sametype is a con-
senative approad to partition the data. Thereforewe join all occurrences
of the prev.N_wf feature type that have the samefrequencydistribution for
the target word, e.g. 1/0. This way, we perform smoothing separatelyfor
eat word.

We could use the smaothed values calculated in this manner directly,
but many data points would still be missing. For instance, when studying
prev.N_wf in the X/0 frequencycasefor art, we found occurrencesof this fea-
ture typein held-outdata in the 1/0, 2/0 and 3/0 casesput not the rest (4/0
and higher). In this caseit is necessaryto useinterpolation for the missing
data points, and we applied log-linear interpolation. The interpolation also
o ers additional bene ts. Firstly, usingthe slope of the interpolated line we
can detect anomalousdata (such as caseswhere 1/0 gets higher smoothed
valuesthan 5/0) as we always expect a positive slope, that is, higher ra-
tios desene higher smaothed values. Secondly interpolation can be usedto
override a minority of data points which cortradict the generaltrend. These
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points will be illustrated in the examplespresened in sectionV.6.3.
Howewer, when using interpolation, we needat least two or three data
points for all feature types. For feature typeswith few points, we apply a
badk-o0 strategy: we join the available data for all words in the samePart
of Speed. The rationale for this grouping is that strong featuresfor a noun
should be also strong for other nouns. In order to decidewhether we have
enoughdata for a feature type or not, we use the number of data points
(minimum of three) available for interpolation. In orderto ched the validity
of the interpolation, those caseswvherewe get negative slope are discarded.

V.6 Featureype smathingalgaithm

There are two stepsin the application of the smaothing algorithm to the
disanbiguation task. First, we use the available training data in cross-
validation, with an interpolation method, in orderto estimatethe smoothing
tables for eat feature type with X/0 or X/1 raw frequency Secondthe in-
terpolated tables are accessean the disanbiguation phase,whenthe WSD
methods require them. SectionsV.6.1 and V.6.2 presen the algorithms, and
sectionV.6.3 shavs someillustrativ e examples.

V.6.1 Buildingsmaothing tables

We build two kinds of smaothing tables. The rst kind is the application
of the grouping strategy basedon feature typesand frequencydistributions.
Two tables are produced: one at the word level, and another at the PoS
level, which we will call smmthed tables The secondkind is the result of
the interpolation method over the two aforemerioned tables, which we will
call interpolated tables All in all, four tables are producedin two stepsfor
ead frequencydistribution (X/0 and X/1).

1) Construct smoothing tables for each target word and for each
PoS. For eat feature type (e.g. prev.N_wf), we identify the instancesthat
have X/0 or X/1 distributions (e.g. prev.N_wf Aboriginal) and we count
collectively their occurrenceger sense.We obtain tableswith (X',Y') values
for eath word, feature type and pair (X,Y); where(X,Y) indicate the values
seenfor ead feature in the training part, and (X',Y') represen the courts
for all the instancesof the feature type with the same(X,Y) distribution in
the held-out part.
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1. Construct word smoothing tables for X/0 (XO0)
- For each fold from training-data (5 folds)
Build count(f;w;sense) for all senses from the estimation-folds (4 folds)
For each word w, for each feature f in each occurrence in target-fold 1 fold)
get count9(f;w;sense) for all senses of win target-fold
If distribution of count(f;w;sense) is of kind X/0 (X0) then
For each sense
if sense= s:maxs count(f;w;s)
then # sense is major sense in estimation-fold
increment X' in table _word_XO0(w,type(f),X)
else
increment Y' in table _word_X0(w,type(f),X)

- Normalize all tables: X' is set to X, and Y' = Y'X'/X
Output (No need to keep X'): nor mtable_word_X O(w;type(f); X) = Y?©

2. Log linear Interpolation

- Accumulate X' and Y' values

- Mapinto linear space:

logtable_word_X O(w; ty pe(f ); X ) :=

log(acctable_word_X O(w; ty pe(f ); X ):X %=acctable_word_X O(w; ty pe(f ); X ):Y 9

- Do linear interpolation of logtable: sourcepoint(w;type(f)) = ao,
gradient (w; type(f)) = a1

- For each X from 1to 1
inter polatedtable_word_X O(w;ty pe(f ); X ) := X=(e20*a1X)

Figure V.1: Construction of smaothing tables for X/0 featuresfor words.
The X/1 and PoStables are built similarly.

We perform this step using 5-fold cross-alidation on the training data.
We separatein a stratied way* the training data in two parts: estimation-
fold (4/5 of the data) and target-fold (1/5 of the data), which plays the role
of the held-out data. We run the algorithm v etimesin turn, until ead part
hasbeenusedastarget. The algorithm is descrikedin detail in Figure V.1 for
the X/0 case(the X/1 caseis similar). Note that the X court correspndsto
the majority sensefor the feature,and the Y court to all the rest of minority
sensedor the feature. For example,we can seein the held-out columnsin
table V.1 the (X',Y") courts obtained for the featuretype prev.N_wf and the
target word art in the Senseal-2 training data for the X/0 cases.

2) Create interp olation curves. From the smaothing tables, we inter-
polate curves for feature typesthat have at least 3 points. The processis
descritedin detail in the secondpart of Figure V.1. We rst accunulate the

4By strati ed, we meanthat wetry to keepthe sameproportion of word sensesn eac
of the 5 folds.
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Original Held-out Accum ulated Interp olated

X Y X' Y' XY X' Y' XY log(X'7Y") X" Y" X"y log(X"/Y")

1 0 4 4 1 4 4 1.00 0.00 1 0.91 1.10 0.09

2 0 6 1 6 10 5 2.00 0.69 2 1.18 1.69 0.52

3 0 2 0 1 12 5 2.4 0.88 3 1.14 2.63 0.96
4 0.98 4.08 1.40

TableV.1: Smoothing table for the feature prev.N_wf and the word art (X/0
distribution).

courts in the smoothed table from the previous step. The \Accumulated"
columnsin table V.1 show thesevalues,aswell asthe X/Y ratio and its log-
arithm. The Y value is then normalized, and mapped into the logarithmic
space.We apply a commonlinear interpolation algorithm called least squae
methal (Neter et al., 1985), which yields the starting point and slopes for
ead interpolation table. If we get a negative slope, we discard this interpo-
lation result. Otherwise,we canapply it to any X, and after mapping again
into the original spacewe get the interpolated valuesof Y, which we denote
Y". Table V.1 shavs the Y" values,the X"/Y" ratios, and the log values
we nally obtain for the prev.N_wf examplefor art for X = 1::4andY = 0
(\In terpolated" columns). The X"/Y"ratios indicate that for X valueslower
than 4, the feature type is not reliable, but for X >= 4and Y = 0, this
feature type can be usedwith high con dence for art.

V.6.2 Usingthe smoothedvalues

The processto usethe smaothed valuesin testing is descriked in Figure V.2.
There we seethat when we nd X/0 or X/1 distributions, the algorithm
resortsto the obtain_.smamthed_value function to accesghe smoothing tables.
The four tables constructed in the previous section are all partial, i.e. in
somecaseghere is no data available for someof the senses.The tables are
consultedin a xed order: we rst ched the interpolated table for the target
word; if it is not available for the featuretype, we accesshe interpolatedtable
for the PoS of the target word. Otherwise, we resort to the non-interpolated
smoothing table at the word level. Finally we accessthe non-interpolated
smoothing table for the PoS.

In caseswere the four tables fail to provide information, we can bene t
from additional smaoothing techniques. The three ML methods that we have
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Given an occurrence of a word win testing, for each feature f in the context:
Get count(f;w;sense) for all senses from all training (all 5 folds)
If counts are not X/1 or X/O then
For each sense:
count9(f ; w; sense) := count (f ; w; sense)

Elseif count is X/Y (where Y is 1 or 0) then
If Y%= obtain _smoothed _value(X;Y)
Then
For each sense
If sense= s:maxs count(f;w;s) then #(MAJORSENSE)
count(f ; w; sense) = X
Elsif sense= 2nd_sense then #(ONLYIF Y=1, WHERE MINORITYSENSE
OCCURSNCE)
count(f ; w; sense) := Y 9 #(SECONBENSEGETSMOREREDIT)
Else
count(f ; w; sense) := Y %jother sensesj # (DISTRIBUTEWEIGHTUNIFORMLY
AMON®INORSENSES)

Else # (THEREIS NOSMOOTHINBATAFORTHIS X/Y)
DISCARD #(THIS IS POSSIBLEFORDL)
For each sense
If sense= s:maxs count(f;w;s) then # (MAJORSENSE)
count%(f ; w; sense) := X
Elsif sense= 2nd_sense then #(ONLYIF Y=1, WHERE MINORITYSENSE
OCCUR®SNCE)
count(f; w; sense) := 1 # (SECONIBENSEGETSMOREREDIT)

Figure V.2: Application of Feature-type smoothing to DL, NB and VSM.

applied have di erent smoothing requiremerts, and one of them (NB) does
needa generallyapplicable smaothing technique:

DL : asit only usesthe strongestpieceof evidence,it can discard X/0 fea-
tures. It doesnot require X/1 smaothing either.

NB : It needsto estimateall singleprobabilities, i.e. all featuresfor all senses,
thereforeit needssmaothing in X/0, X/1 and even X/2 and larger valuesof
Y. The reasonis that in the caseof poliseny degreedarger than 2, the rare
sensesnight not occur for the target feature and that could lead to in nite
valuesin the equation.

VSM : it hasno requiremen for smoothing.

In order to chedk the impact of the various smoothing possibilities we
have devised6 smoothing algorithms to be applied with the 3 ML methods
(DL, NB, and VSM). We warnt to note that not requiring smaothing does
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not meanthat the method doesnot prot from the smoothing technique (as
we shall seein the evaluation). For the baselinesmaothing strategy we chose
both \no smoothing”, and \ xed smoothing"; we also tried a simple but
competitive method from (Ng, 1997),denotedas\Ng smaoothing” (methods
to be descrited below). The other three possibilities consiston applying the
Feature-Type method asin Figure V.2, with two variants: use\Ng smaooth-
ing" for badk-o (E), or in a conmbined fashion (F):

(A) No smaothing: Useraw frequencieddirectly.

(B) Fixed smoothing: AssignO0.1raw frequencyto ead sensewith a 0 value.
(Ng) Ng smoothing: This method is basedon the global distribution of the
sensesn the training data. For ead feature, ead of the sense®f the target
word that hasno occurrencesn the training data getsthe ratio betweenthe
probability of the senseoccurring in the training data and the total number
of examples:Prob(sense)/Numler_of_examples

(Ft) Feature-type smoothing: The method descriked in this chapter. In the
caseof DL, note that whenno data is available the feature is just discarded.
For NB, it is necessaryto rely on bak-o strategies(seeE and F).

(E) Ft with Ng asbad-0: When Ft doesnot provide smoothed values,Ng
is applied.

(F) Ft and Ng conbined: The smoothed valuesare obtained by multiplying

Ft and Ng values. Thus, in Figure V.2, the count{f;w; sense valuesare
multiplied by Prob(sense)/Numler_of_examples

The output of the smoothing algorithm is the list of courts that replace
the original frequencycourts when computing the probabilities. We tested
all possibleconbinations, but notice that not all smoothing techniquescan
be usedwith all the methods (e.g. we cannotuseNB with \no smoothing").

V.6.3 Applicationof smaothing: an example

We will focus on three feature types and the target word art in order to
shov how the smaothed values are computed. For art, the following fea-
tures have a 1/0 distribution in the training data: \prev.N_wf Aboriginal",
\win _cont_lem_context Jerry", and \win _2gram_context collection owned" .

>The rst feature indicates that Aboriginal wasthe rst noun to the left of art. The
secondthat Jerry wasfound in the context window. The third that the bigram collection



V.6 Feature-t yp e smoothing algorithm 139

prev_N _wf win_cont_lem_context win_2gram_context
Yo xroy Xy Xty Xy Xty
0.91 || 517 1187 2.24 || 63 150 2.31

1 1
118 82 125 |2 4458 4 2 4.37
114 13 22 3 662( 2 1 3 6.48

w N R X
cool <
N o B|X
or A
wN P

Table V.2: Smoothed values (interpolation per word) for the feature types
prev_N_wf, win_cont_lem_context and win_2gram_context with the target word
art.

The majority sensefor the three casesis the rst sense.If we nd one of
thosefeaturesin atest occurrenceof art, we would like to know whetherthey
are good indicators of the rst senseor not.

As all thesefeaturesoccurwith frequencyl1/0, we have collectedall courts
for the featuretypes(e.g. prev.N_wf) which alsohave 1/0 occurrencesn the
training data. Table V.1 shaws the courts for prev.N_wf; the (4,4) values
that appear for (X',Y') indicate that the prev.N_wf featuresthat have 1/0
distribution in the target-folds cortribute 4 examplesto the majority sense
and 4 to the minority senseswhen looked up in the estimation-folds.

The data for prev.N_wf has at least 3 points, and therefore we use the
accunulated frequenciesto obtain an interpolation table. We seethat the
interpolated frequenciesfor the minority sensesstay nearly constart when
the X valuesgo up. This would re ect that the probability of the minority
sensesvould go down quickly for higher valuesof X. In fact, the interpolated
table canbe usedfor valuesof X greaterthat 3, which had not beenattested
in the training data.

The sameprocessis followed for the other two feature types: win_cont_-
lem_context and win_2gram_context Table V.2 shows the smaoothed values
(X,Y") andthe interpolated values(X",Y") for the three typesstudied. The
valuesfor Y aremuch higherin the latter two casesjndicating that thereis a
very low con dencefor thesefeaturesfor the word art. In cortrast, prev.N_wf
can be a valuable feature if found in 4/0 or greater distributions.

Figure V.3 shaws this di erent behavior graphically for prev.N_wf and
win_cont_lem_context For ead feature type, the estimated Y" valuesand
the log-ratio of the majority senseare given: the higher the Y" the lower

owneal was found in the context window.
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Smoothed values
14 : |
win_context (Y") ——
12 L win_contex (log-ratio) - -+ -
prev.N_wf (Y") ——
10 - prev_N_wf (log-ratio) ------
-2 | | | !
X
Figure V.3: Interpolation curves for the X/0 case (features prev.N_wf

and win_context) with the target word art. The Y" estimation and the
log(X °2Y % valuesare given for ead X value and feature.

the con dence in the majority sense,and inversely for the log-ratio. We
can seethat the curve for the Y" valuesassignedto prev.N_wf get lower
credit as X increases,and the log-ratio grows constarily. On the cortrary,
for win_cont_lem_context the values of Y" increase,and that the log-ratio
remainsbelow zero, indicating that this feature type is not informative.

V.7 Evaluatioron Senseval-2

The main experimert is aimedat studying the performanceof four ML meth-
ods with the di erent smaothing approades (where applicable). The recall
achieved on the Senseal-2 datasetis showvn in table V.3, the bestresults per
method marked in bold. We separatedthe results accordingto the type of
smoothing: basic smoothing (\no smoothing" and \ xed smoothing"), and
complexsmaoothing (techniquesthat rely on \F eature-type smaoothing” and
\Ng smoothing"). We canseethat the resultsaredi erent dependingon the
ML method, but the best results are achieved with complex smaothing for
the 3 ML methods studied: DL (Ft and E), NB (F), and VSM (Ng). The
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Basic Smo othing Complex Smo othing

A B Ng Ft E F
DL 60.4 60.7 64.4 64.4 64.3
NB 62.9 63.5 61.8 63.8
VSM 65.9 65.6 66.2 64.0 64.2 65.2
SVM 65.8

Table V.3: ML methods and smoothing techniques: (A) no smoothing,
(B) xed smoothing, (Ng) Ng smaoothing, (Ft) Feature-type smoothing, the
method presetted in this chapter, (E) Ft with Ng asbadk-o, and (F) the
combination of Ft and Ng.

best performanceis attained by the VSM method, reating 66.2%, which
is one of the highestreported in this dataset. The other methods get more
prot from the smoothing techniques,but their performanceis clearly lower.
McNemar's test® shavs that the di erence betweenthe results of the best
\basic smoothing" technique and the best \complex smoothing" technique
is signi cant for DL and NB, but not for VSM.

All in all, we seethat the performanceof the statistically-based (DL,
NB) methods improves signi cantly, making them comparableto the best
singlemethods. In the next experimert, we tested a simple way to combine
the output of the 4 systems: one system, one vote. The conbination was
tested on 2 typesof systems:thosethat relied on \complex smaothing”, and
thosethat not. For ead algorithm, the best smaothing technique for eat
type was chosen;e.g. the VSM algorithm would usethe (A) approad for
\simple smoothing", and (Ng) for \complex smoothing" (seetable V.3). The
performanceof thesesystemsis given in table V.4. The table alsoshaws the
results achieved discarding one systemin turn.

The resultsshow that we getan improvemen over the bestsystem(VSM)
of 0.5% when combining it with DL and SVM. The table also illustrates
that smoothing accourts for all the improvemen, as the combination of
methodswith simplesmaothing only readies66.0%in the bestcase for 66.7%
of the \complex smoothing" (di erence statistically signi cant accordingto
McNemar'stest with 95% con dence interval).

As a reference table V.5 shows the results reported for di erent groups

6McNemar's signi cance test has beenapplied with a 95% con dence interval.
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Systems Basic smoothing | Complex smo othing
All methods 65.7 66.2
except SVM 64.9 66.2
except NB 66.0 66.7
except VSM 64.9 65.7
except DL 65.7 66.3

Table V.4: Combination of systemswith basic smoothing and complex
smoothing. The rows shav the recall achieved conbining the 4 systems,
and discardingonein turn.

and algorithms in the Senseal-2 competition and in morerecer works. Our
algorithms are identi ed by the \IXA" letters. \JHU - S2", correspndsto
the JohnsHopkins University systemin Senseal-2, which wasthe best per-
forming system.\JHU" indicatesthe systemsfrom the JohnsHopkins Uni-
versity implemened after Senseal-2 (Cucerzanand Yarowsky, 2003;Florian
et al., 2002). Finally, \NUS" (National University of Singapore) stands for
the systemspresetied in (Lee and Ng, 2002). In addition to the methods
that we applied; there are Mixture Models (MM), AdaBoost, and Decision
Trees. The table is sorted by recall.

We can seethat our systemsachieve high performance,and that the
conbination of systemsis able to beat the best results. Howeer, we chose
the bestsmoothing algorithm for the methods usingthe testing data (instead
of using cross-alidation on training, which would require to construct the
smaoothing tables for ead fold). This fact makesthe combined systemnot
directly comparable. In any case,it seemsclear that the system bene ts
from smoothing, and obtains results similar to the best gures reported to
date.

V.8 Evaluatioron Senseval-3

In this sectionwe presen the results obtained by our systemsin two di er-
ernt tasks of the Senseal-3 competition (English and Basquelexical-sample
tasks). An analysisof the supervisedsystemscompeting in the English task
is given in section11.8. We used the augmerted feature set descrited in
sectionV.4, including domain features.

We applied the smoothing techniquesand the ensenble of methods stud-
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Metho d Group Smo othing Recall

Combination IXA Complex (best) | 66.7

Com bination JHU 66.5 ) Best result to date
VSM IXA Ng 66.2

Combination IXA Basic (best) 66.0

SVM IXA 65.8

SVM NUS 65.4 ) 2nd best result to date
DL IXA Ft 64.4

Com bination JHU-S2 64.2 ) Senseval-2 winner
NB IXA E 63.8

AdaBoost NUS 62.7

NB NUS \Add one" 62.7

Mixture Models | JHU 62.5

DecisionTrees | NUS 57.2

Table V.5: Comparisonwith the best systemsin the Senseal-2 competition
and the recen literature.

iedin this chapter. After ewvaluating the algorithms onthe Senseal-3 training
data by meansof cross-alidation, we submitted two systemsfor ead task:
the best ensenble, and the best single method.

Table V.6 shows the performanceobtained by our systemsand the win-
ning systems(which are described in detail in sectionl1.8) in the Senseal-3
ewvaluation. We can seethat we are very closeto the bestalgorithms in both
languages.

Our bestensenble for English (in Senseal-3 training, by meansof cross-
validation) was formed by three systems: DL (with Ft smaoothing), VSM
(with Ng smaothing), and SVM. The combination of methods was useful for
the nal task, wherewe improve the recall of the best single system(VSM,
with Ng smaothing) in 0.3%, reacing 72.3%. This di erence is statisti-
cally signi cant accordingto McNemar'stest. Our disanmbiguation procedure
shows a similar behavior on the Senseal-2 and Sensesl-3 data for English,
where the ensenble works best, followed by VSM. The smoothing methods
cortribute to increasethe recall in both cases.

Howewer, the resultsaredi erent for the Basquetask. The cross-alidation
experimerts indicate that the best combination is formed by the following
systems: NB (Ng smoothing), VSM (Ng smoothing), and SVM. The best
singlesystemis SVM. In this case,the combination of methods doesnot im-
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Task | System Code Metho d Recall
Eng. Senseval-3 Winner RLSC - kernel 72,9
Eng. BCU _comb DL(Ft)-VSM(Ng)-SVM 72,3
Eng. BCU-English VSM(Ng) 72,0
Basg. | Senseval-3 Winner | AB 70,4
Basq. | BCU-Basque SVM 69,9
Basq. | BCU-Basquecomb NB(Ng)-VSM(Ng)-SVM | 69,5

TableV.6: O cial resultsfor the English and Basquelexical tasks (recall).

prove the results, and the SVM method alone provides better results (69.9%
recall), although the di erence is not signi cant applying McNemar's test.
In general,the prot from the smaothing methods is much lower, and some
algorithms (like VSM) seemto perform below the expectations. We think
that the Basquefeature set needsmore analysis.

Overall, this task shaved that the ensenble of algorithms (with the help
of smaothing) providesa morerobust systemfor WSD, and is ableto achieve
state-of-the-art performance.

V.9 Conclusions

In this work, we have studied the smoothing method proposedin (Yarowsky,
1995a),and we presen a detailed algorithm for its application to WSD. We
have described the parametersused, and we have applied the method on
three dierent ML algorithms: DL, NB, and VSM. We also analyzed the
impact of se\eral smaothing strategies,and the conbination of algorithms to
construct a robust WSD system.

The ewvaluation on Senseal-2 data indicated that the smoothing method
exploredin this chapter is ableto make all three methods perform at very high
precisions,comparableand in somecasessuperior to the bestresult attained
in the Senseal-2 competition. We alsoshowved that a simple combination of
the methodsand a fourth systembasedon SVM attains the bestresult for the
Senseal-2 competition reported sofar (although only in its more successful
con guration, as the systemwas not \frozen" using cross-alidation). We
alsoapplied this architecture to the English and Basquelexical-sampletasks
in Senseal-3. We submitted two systemsfor ead task after tuning on cross-
validation: the best ensenble, and the best single method. Our systems
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obtained good results, very closeto the winning systemsin both tasks.

For English, our disanbiguation method shows a similar behavior on the
Senseal-2 and the Senseal-3 datasets(both in cross-alidation and against
the testing part). The ensenble performsbestin all casesfollowed by VSM.
The smaothing methods cortribute to increasethe recallin both cases.VSM
has proved to be a competitiv e single system, while the ensenble of algo-
rithms provides robustness,acieving state-of-the-art performance.

The results for Basqueare di erent, in this casethe best single system
is SVM, and the combination of methods does not improve the results. In
general,the prot from the smaothing methods is much lower, and some
algorithms (like VSM) seemto perform below the expectations. Our main
conclusionfor Basqueis that the chosenfeature set should be revised,as it
is not clear how to represem the cortext in caseof agglutinative languages.
Using a \cleaner" feature setwould alsohelp the smoothing techniques. An-
other improvemen for the Basquesystemwould comefrom the inclusion of
domain tags as features, using the information available in the Senseal-3
dataset.

For further study of the smoothing method, we would like to extend this
work to X/Y featuresfor Y greaterthan 1, and try other grouping criteria,
e.g. taking into accoun the classof the word. We would alsolike to compare
our resultsto other more generalsmaoothing techniques(Good, 1953;Jelinek
and Mercer, 1980;Chen, 1996).

An interesting application of the smaothing techniquesis to detect good
features,evenin the caseof low amourts of training data (asit is the casefor
most of the words in WSD). Thesefeaturescould be usedas seedgo obtain
new examplesautomatically, in a fashionsimilar to the method in (Leacack
et al., 1998),which will be studied and applied throughout the next chapter.
They could also be integrated in a bootstrapping processusing DLs, asin
(Yarowsky, 1995b). The DL algorithm is well suited for this task, asit relies
on a single pieceof evidence(feature) to choosethe correct senseand it has
beenshavn to perform signi cantly better with smaothing.

Finally, we would like to apply our last version of the algorithm, which
hasbeenshown to perform with state-of-the-art recall on the lexical sample,
to an all-wordstask. The smaothing techniqueswould help usto addressthe
sparsedata problem; and the knowledgeacquisition problem will be attacked

’A single experiment adding this simple feature to the best Basque system (VSM)
showed an improvemert of 0.6% recall, beating the Sensewal-3 winner by 0.1%.
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with the algorithm to be presened in the next chapter.



VI. CHAPTER

Automatic acquisition of sense-tagged
examples

VI.1 Introduction

One of the main drawbadks for supervisedWSD is the knowledgeacquisition
bottlened: the systemsneedlarge amourts of costly hand-taggeddata. The
situation is more dramatic for lesserstudied languagesJike Basque.In order
to overcomethis problem, di erent researt lines have beenexplored. The
following are the most studied: bootstrapping techniques(Y arowsky, 1995b),
active learning (Argamon-Engelsonand Dagan, 1999),and automatic acqui-
sition of training examples(Mihalcea, 2002). We will introduceead of these
lines in the \related work" section. In this work, we have focusedon the
automatic acquisition of examples.

When supervised systemshave no speci ¢ training examplesfor a target
word, they needto rely on publicly available all-words sense-taggedorpora
like Semcor,which is taggedwith WordNet word senses.The systemsper-
forming bestin the English all-words tasksin Senseal-2 and Senseal-3 (cf.
chapter I1) were basically supervised systemstrained on Semcorand simi-
lar sources,like WordNet examples. Unfortunately, for most of the words,
these corpora only provide a handful of tagged examples. In fact, only a
few systemscould overcomethe MFS baseling in the dierent editions of

1This value was obtained assigningthe most frequert sensein Semcor.
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the Senseal all-words task. In our approad, we will alsorely on Semcor
asthe basicresource,both for training examplesand as an indicator of the
distribution of the sense%f the target word.

The goal of this chapter is to evaluate up to which point we can auto-
matically acquire examplesfor word sensesand train accurate supervised
WSD systemson them. This is a very promising line of researt, but one
which remainsrelatively under-studied (cf. sectionVI.2). The method we
applied is basedon the monosemougelatives of the target words (Leacack
et al., 1998), and we studied someparametersthat a ect the quality of the
acquiredcorpus,sud asthe distribution of the number of training instances
per eat word senseg(bias), and the type of featuresusedfor disanbiguation
(local vs. topical).

Basically, we built three systemswith di erent degreef supervisionthat
would be applicableto an all-words task:

Fully supervised: using examplesfrom Semcorand automatically ac-
quired examples.

Minimally supervised: using the distribution of sensesn Semcorand
automatically acquiredexamples.

Fully unsupervised: using an automatically acquired senserank (Mc-
Carthy et al., 2004)and automatically acquiredexamples.

This chapter is structured as follows. First, sectionVI.2 descrikes previ-
ouswork on the eld. sectionVI.3 introducesthe experimertal setting for
ewvaluating the acquiredcorpus,and sectionV1.4 presens the featureset. sec-
tion V1.5 is dewted to the processof building the corpus,which is evaluated
in sectionVI1.6. Finally, the conclusionsare givenin sectionVI1.7.

V1.2 Relatedvork

As we mertioned in the introduction, three main lines of researti on the
knowledgeacquisition bottlened are bootstrapping techniques,active learn-
ing, and automatic acquisition of training examples. We will briey intro-
duce the former two, and then we will focus on related work on automatic
acquisition of examples,which is the goal of this chapter.
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Bootstrapping techniques consist on algorithms that learn from labeled
and unlabeled data. Among them, we can highlight co-training (Blum and
Mitc hell, 1998)and their derivatives(Collins and Singer,1999;Abney, 2002).
Thesetechniquesare very appropriate for WSD and other NLP tasksbecause
of the wide availability of untagged data and the scarcity of tagged data.
Howe\er, there is no published positive results for WSD. In his well-known
work, Yarowsky (1995b)applied an iterativ e bootstrapping procesgo induce
aclassi er basedon DLs. With a minimum setof seed(annotated) examples,
disambiguation resultscomparableto supervisedmethods wereobtainedin a
limited set of binary sensedistinctions, but this work hasnot beenextended
to ne-grained senses.

Activ e learning is usedto chooseinformative examplesfor hand-tagging,
in order to reducethe manual cost. Argamon-Engelsonand Dagan (1999)
describe two main typesof active learning: membership queriesand selective
sampling. In the rst approad, the learner constructs examplesand asksa
teacher to label them. This approad would be dicult to apply to WSD.
Instead, in selective samplingthe learner selectsthe most informative exam-
plesfrom unlabeleddata. In one of the few works directly appliedto WSD,
Fujii et al. (1998) applied selective samplingto the acquisition of examples
for disambiguation of verb sensesjn an iterative processwith human tag-
gers. The informative exampleswere chosenfollowing two criteria: maximum
number of neighbors in unsuperviseddata, and minimum similarity with the
supervisedexampleset. Another active learning approad is the Open Mind
Word Expert (Mihalcea and Chklovski, 2003), which is a project to collect
sense-tagge@dxamplesfrom web users. The systemselectsthe examplesto
be taggedapplying a selective sampling method basedon two di erent clas-
si ers, choosing the unlabeled exampleswhere there is disagreemen The
collected data was used in the Senseal-3 English lexical-sampletask (cf.
sectionl1.3).

In automatic acquisition of training examples,an external lexical source
(WordNet, for instance) or a sense-taggeaorpusis usedto obtain new ex-
amplesfrom a very large untagged corpus (e.g. the Internet). In (Leacack
et al., 1998),a method to obtain sense-tagge@xamplesusing monosemous
relativesfrom WordNet is preseted. Our approad, which will be described
in section VI.5, is basedon this early work. In their algorithm, Leacak
et al. (1998)retrieve the samenumber of examplesper eat senseand they
give preferenceo monosemouselativesthat consistin a multiw ord cortain-
ing the target word. Their experimert is evaluated on 3 words (a noun, a
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verb, and an adjective) with coarsesense-granlarity and few senses.The
results shaved that the monosemouscorpus provided precision comparable
to hand-taggeddata.

In another approad, Mihalcea and Moldovan (1999) used information
in WordNet (e.g. monosemoussynoryms and glosses)}o construct queries,
which were later fed into the Altavista® web seart engine. Four procedures
wereusedsequetially, in a decreasingorder of precision,but with increasing
levels of coverage. Results were evaluated by hand, nding out that over
91% of the exampleswere correctly retrieved amonga set of 1,080instances
of 120word sensesHowewer, the number of examplesacquireddid not have
to correlate with the frequencyof sensesand the corpusresulting from the
experimert was not usedfor training a real WSD system.

In arelated work, Mihalcea (2002) generateda sensdaggedcorpus(Gen-
Cor) by using a set of seedsconsisting of sense-tagge@xamplesfrom four
sources:SemCor,WordNet, examplescreated using the method above, and
hand-taggedexamplesfrom other sources(e.g. the Senseal-2 corpus). By
meansof an iterative process,the system obtained new seedsfrom the re-
trieved examples.In total, a corpuswith about 160,000exampleswas gath-
ered. The ewaluation in the lexical-sampletask shaved that the method was
useful for a subsetof the Senseal-2 testing words (results for 5 words were
provided).

V1.3 ExperimentalSetting

For the experimerts in this chapter we chosethe \Sensewal2B" setting (cf.
section 111.3.3.4). In this setting, the exampleson the Senseal-2 testing
data taggedwith multiw ords, phrasalverbs,and proper nounsare previously
removed in order to focuson the sensedistinctions of eat word.

The experimerts wereperformedon the 29 nounsavailable for the Senseal-
2 lexical-sampletask. We separatedthesenounsin 2 sets,depending on the
number of examplesthey have in Semcor:SetA cortained the 16 nounswith
more than 10 examplesin Semcor,and Set B the remaining low-frequency
words.

It isimportant to note that the training part of Senseal-2 lexical-sample
wasnot usedin the processasour goalwasto test the performancewe could

2http://lwww.alta vista.com



V1.4 Feature set 151

achieve with the minimal resourcegqi.e. those available for any word).

V1.4 Featureset

As features,we relied on a basicset of local and topical features. In previous
chapters we have seenthat richer featurescan improve the performanceof
the system, but in this casewe focusedon the comparisonof hand-tagged
and automatically-obtained corpora, and therefore the overall performance
of the systemswas not relevant.

Previouswork on automatic acquisition of examplegLeacak et al., 1998)
hasreported lower performancewhen usinglocal collocations formed by PoS
tags or closed-classvords. We analyzedthe results using local and topical
featuresseparately and alsothe conbination of both types:

Localfeatures: Bigramsandtrigrams, formedby the word-form, lemma,
and part-of-speed of the surroundingwords. Also the cortent lemmas
in a 4 word window around the target.

Topical features: All the cortent lemmasin the context.

V1.5 Buildingthe monosemoulativesmeb capus

In order to build this corpus’, we have acquired 1,000 Google snippets for
eath monosemousvord in WordNet 1.7. Then, for ead word senseof the
ambiguous words, we gathered the examplesof its monosemousrelatives
(see below). This method is inspired in (Leacak et al., 1998), and has
shown to be e ective in experimerts of topic signature acquisition (Agirre
and Lopezde Lacalle, 2004). This last paper alsoshowns that it is possibleto
gather examplesbasedon monosemouselativesfor nearly all noun sensesn
WordNet*.

The basic assumptionis that for a given word senseof the target word,
if we had a monosemoussynorym of the word sense then the examplesof
the synorym should be very similar to the target word sense,and could

3The automatically acquired corpus will be referred indistinctly as web-corpus, or
MOoNOSeMmMOoUs-corpus

4All the examples in this work are  publicly available in
http://ixa2.si.eh u. es/pu b/ sensecorpus
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Sense inventory  (church)xs
{ Sense 1: A group of Christians; any group professing
Christian  doctrine or belief.

{ Sense 2: A place for public (especially Christian)
worship.

{ Sense 3: A service conducted in a church.

Monosemouselatives  for different  senses (of church)
{ Synonyms(Type 0): church building (sense 2), church
service (sense 3) ...

{ Direct hyponyms (Type 1): Protestant Church
(sense 1), Coptic Church (sense 1) ...

{ Direct hypernyms (Type 2): house of prayer (sense 2),
religious service (sense 3) ..

{ Distant hyponyms (Type 2,3,4...): Greek Church
(sense 1), Western Church (sense 1)...

{ Siblings (Type 3): Hebraism (sense 2), synagogue
(sense 2) ...

Figure VI.1: Sensdnvertory and a sampleof monosemouselativesin Word-
Net 1.7 for church.

therefore be usedto train a classi er of the target word sense. The same,
but in a lesserexternt, canbe applied to other monosemouselatives,sud as
direct hyponyms, direct hypernyms, siblings, indirect hyponyms, etc. The
expected reliability decreaseswith the distancein the hierarchy from the
monosemouselative to the target word sense.

The monosemous-corpuw/as built using the simplesttechnique: we col-
lected examplesfrom the web for eat of the monosemouselatives. The
relatives have an assaiated number (type), which correlatesroughly with
the distanceto the target word, and indicatestheir relevance: the higher the
type, the lessreliable the relative. A sample of monosemougelatives for
di erent sensesf church, together with its senseinvertory in WordNet 1.7
is showvn in gure VI.1.

Distant hyponyms receive a type number equal to the distance to the
target sense.Note that we assigneda higher type value to direct hypernyms
than to direct hyponyms, as the latter are more useful for disanbiguation.
We alsodecidedto include siblings, but with a high type value.

In the following subsectionswe will describe step by step the method to
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construct the corpus. First we will explain the acquisition of the highest
possibleamourt of examplesper sense;then we will explain di erent ways
to limit the number of examplesper sensefor a better performance; nally

we will seethe e ect of training on local or topical featureson this kind of
corpora.

VI.5.1 Collectingthe examples

The examplesare collectedfollowing thesesteps:

1: We query Google® with the monosemouselativesfor eah senseand
we extract the snippets as returned by the seart engine. All snippets re-
turned by Google are used (up to 1,000). The list of snippets is sorted in
reverseorder. This is donebecausehe top hits usually aretitles and incom-
plete sertencesthat are not useful.

2: We extract the sentences(or fragmerts of sertences)around the target
seard term. Someof the sertencesare discarded,accordingto the following
criteria: length shorter than 6 words, having more non-alpharumeric char-
actersthan words divided by two, or having more words in uppercasethan
in lowercase.

3: The automatically acquired examplescortain a monosemouselative
of the target word. In orderto usetheseexamplesto train the classi ers, the
monosemouselative (which can be a multiw ord term) is substituted by the
target word. In the caseof the monosemouselative being a multiword that
contains the target word (e.g. Protestant Church for church) we can choose
not to substitute, becauseProtestant for instance, can be a useful feature
for the rst senseof church. In thesecaseswe decidednot to substitute and
keep the original sertence, as our preliminary experimerts on this corpus
suggestedalthough the di erences were not signi cant).

4: For a givenword sensewe collectthe desirednumber of examples(see
following section) in order of type: we rst retrieve all examplesof type O,
then type 1, etc. up to type 3 until the necessaryexamplesare obtained.
We did not collect examplesfrom type 4 upwards. We did not make any
distinctions betweenthe relativesfrom ead type. Leacak et al. (1998) give
preferenceto multiw ord relativescortaining the target word, which could be
an improvemern in future work.

SWe usethe oine XML interface kindly provided by Google for researd.
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On average,we have acquired roughly 24,000examplesfor eat of the
target words usedin this experimert.

VI1.5.2 Number of examplegper sensgbias)

Previouswork (Agirre and Martinez, 2000)hasreported that the distribution
of the number of examplesper word sensgbias for short) hasa strongin u-
encein the quality of the results. That is, the results degradesigni cantly
whene\er the training and testing sampleshave di erent distributions of the
senses.

As we are extracting examplesautomatically, we have to decidehow many
exampleswe will use for eat sense. In order to test the impact of bias,
di erent settings have beentried:

No bias: we take an equalamourt of examplesfor ead sense.
Web bias: we take all examplesgatheredfrom the web.

Automatic ranking: the number of examplesis given by a ranking
obtained following the method descriked in (McCarthy et al., 2004).
They usedathesaurusautomatically createdfrom the BNC corpuswith
the method from (Lin, 1998a),coupledwith WordNet-basedsimilarity
measures.

Semcorbias: we take a number of examplesproportional to the bias of
the word sensesn Semcor.

For example,table VI.1 shows the number of examplesper type (0,1,...)
that are acquired for church following the Semcorbias. The last column
givesthe number of examplesin Semcor.

We have to note that the three rst methods do not require any hand-
labeled data, and that the fourth reliesin Semcor.

The way to apply the bias is not straightforward in somecases.In our
rst approad for Semcor-bias,we assigned1,000 examplesto the major
sensein Semcor, and gave the other sensestheir proportion of examples
(when available). But in somecaseghe distribution of the Semcorbias and
that of the actual examplesin the web would not t. The problemis caused
when there are not enoughexamplesin the webto |l the expectationsof a
certain word sense.

We therefore tried another distribution. We computed, for ead word,
the minimum ratio of examplesthat were available for a given target bias
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Sense 0 1 2| 3| Total Semcor

church#1 0| 476 524 | 0| 1,000 60
church#2 | 306 | 100 561| 0 967 58
church#3 | 147 0 20| O 167 10
Overall 453 | 576 | 1,105| 0 | 2,134 128

Table VI.1: Examplesper type (0,1,...) that are acquiredfrom the web for
the three sensesf church following the Semcorbias, and total number of
examplesin Semcor.

Semcor _ W eb corpus Sensev al
Sense Web bias | Semcor Pr | Semcor MR Auto. MR test

#ex % #ex % #ex % #ex % #ex % #ex %
authorit y#1 18 60 338 05 | 338 337 324 599 138 19.3 37 374
authorit y#2 5 16.7 || 44932 66.4 | 277 27.6 90 16.6 75 105 17 172
authorit y#3 3 10 10798 16 166 16.6 54 10.0 93 13.0 1 1.0
authorit y#4 | 2 6.7 || 886 1.3 111 111 36 6.7 67 94 0 0
authorit y#5 1 3.3 || 6526 9.6 | 55 5.5 18 3.3 205 28.6 34 343
authorit y#6 1 33 || 71 0.1 | 55 5.5 18 3.3 71 9.9 10 101
authorit y#7 0 0 4106 6.1 1 0.1 1 0.2 67 94 0 0

[ Overall [ 30 100 [ 67657 100 [ 1003 100 [ 541 100 [ 716 100 ][99 100 |

Table VI.2: Distribution of examplesfor the sensesf authority in di erent
corpora. Pr (proportional) and MR (minimum ratio) columnscorresmnd to
di erent ways to apply Semcorbias.
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W ord W eb bias Semcor bias Automatic  bias

art 15,387 10,656 2,610
authorit y 67,657 541 716
bar 50,925 16,627 5,329
bum 17,244 2,555 4,745
chair 24,625 8,512 2,111
channel 31,582 3,235 10,015
child 47,619 3,504 791
church 8,704 5,376 6,355
circuit 21,977 3,588 5,095
day 84,448 9,690 3,660
detention 2,650 1,510 511
dyke 4,210 1,367 843
facility 11,049 8,578 1,196
fatigue 6,237 3,438 5,477
feeling 9,601 1,160 945
grip 20,874 2,209 277
hearth 6,682 1,531 2,730
holiday 16,714 1,248 1,846
lady 12,161 2,959 884
material 100,109 7,855 6,385
mouth 648 287 464
nation 608 594 608
nature 32,553 24,746 9,813
post 34,968 4,264 8,005
restraint 33,055 2,152 2,877
sense 10,315 2,059 2,176
spade 5,361 2,458 2,657
stress 10,356 2,175 3,081
yew 10,767 2,000 8,013
Average 24,137 4,719 3,455
Total 699,086 136,874 100,215

TableVI.3: Number of exampledollowing di erent senselistributions for the
Senseal-2 nouns. Minimum-ratio is applied for the Semcorand automatic
bias.

and a given number of examplesextracted from the web. We obsened that
this last approad would re ect better the original bias, at the cost of having
lessexamples.

Table VI.2 preselts the di erent distributions of examplesfor authority.
There we can seethe Senseal-testing and Semcordistributions, together
with the total number of examplesin the web; the Semcorproportional
distribution (Pr) and minimum ratio (MR); and the automatic distribution
(MR). The table illustrates how the proportional Semcorbias producesa
corpus where the percertage of someof the sensess di erent from that in
Semcor,e.g. the rst senseonly gets 33.7%of the examples,in cortrast to
the 60%it hadin Semcor.
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We can also seehow the distributions of sensesn Semcorand Senseal-
test have important di erences, although the main sensds the same. For the
web and automatic distributions, the rst senses di erent; and in the case
of the web distribution, the rst hand-taggedsenseonly accourts for 0.5% of
the examplesretrieved from the web. Similar distribution discrepanciesan
be obsened for most of the words in the test set. The Semor MR column
shows how usingminimum ratio we geta better re ection of the proportion of
examplesin Semcor,comparedto the simpler proportional approad (Semor
Pr) . For the automatic bias we only usedthe minimum ratio.

To concludethis section, table VI.3 showvs the number of examplesac-
quired automatically for eat word following three approades: the web bias,
the Semcorbias with minimum ratio, and the Automatic biaswith minimum
ratio. We can seethat retrieving all the exampleswe get 24,137examples
in averageper word; and respectively 4,7000r 3,400if we apply the Semcor
bias or the Automatic bias.

VI1.5.3 Localvs. topical features

Previous work on automatic acquisition of examples(Leacak et al., 1998)
hasreported lower performancewhen usinglocal collocations formed by PoS
tags or closed-classvords. We performed an early experimert comparing
the results using local features,topical features,and a conbination of both.
In this casewe usedthe web corpuswith Senseal training bias, distributed
accordingto the MR approad, and always substituting the target word. The
recall (per word and overall) is given in table VI.4.

In this setting, we obsered that local collocations achieved the best pre-
cision overall, but the combination of all featuresobtained the best recall.
Local featuresadieve 58.5%precisionfor 96.7%coverageoverall, while top-
ical and combination of featureshave full-coverage.

There were clear di erences in the results per word, suggestingthat es-
timating the best feature-setper word would improve the performance. For
the ewaluation experimerts, we choseto work with the conbination of all
features.
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Lo cal Feats. Topical Feats. Com bination

Word Coverage | Precision Recall Recall Recall

art 94.4 57.4 54.2 45.6 47.0
authorit y 93.4 51.2 47.8 43.2 46.2
bar 98.3 53.0 52.1 55.9 57.2
bum 100 81.2 81.2 87.5 85.0
chair 100 88.7 88.7 88.7 88.7
channel 735 54.0 39.7 53.7 55.9
child 100 56.5 56.5 55.6 56.5
church 100 67.7 67.7 51.6 54.8
circuit 88.7 51.1 453 54.2 56.1
day 98.6 60.2 59.4 54.7 56.8
detention 100 87.5 87.5 87.5 87.5
dyke 100 89.3 89.3 89.3 89.3
facilit y 98.2 29.1 28.6 21.4 21.4
fatigue 100 82.5 82.5 82.5 82.5
feeling 100 55.1 55.1 60.2 60.2
grip 100 19.0 19.0 38.0 39.0
hearth 100 73.4 73.4 75.0 75.0
holiday 100 96.3 96.3 96.3 96.3
lady 100 80.4 80.4 73.9 73.9
material 100 43.2 43.2 44.2 43.8
mouth 100 36.8 36.8 38.6 39.5
nation 100 80.6 80.6 80.6 80.6
nature 100 444 44.4 39.3 40.7
post 98.3 447 43.9 40.5 40.5
restraint 79.5 37.1 295 37.5 37.1
sense 93.0 62.5 58.1 37.2 38.4
spade 100 74.2 74.2 72.6 74.2
stress 100 53.9 53.9 46.1 48.7
yew 100 81.5 81.5 81.5 81.5
Overall 96.7 58.5 56.5 56.0 57.0

Table VI.4: Resultsper featuretype (local, topical, and conbination), using
the monosemouscorpus with Senseal-2 training bias (MR, and substitu-
tion). Coverageand precisionare given only for local features(topical and
combination have full coverage).

V1.6 Evaluation

In all experimerts, the recall of the systemsis preserted as ewvaluation mea-
sure. Thereis total coverage(becauseof the high overlap of topical features)
and the recall and precisionare the same.

In order to ewaluate the acquired corpus, our rst task wasto analyze
the impact of bias. The overall results are shown in table VI.5. There are 2
gures for ead distribution: obtained simply assigningthe rst ranked sense
(1st sense),and using the monosemousorpus following the predetermined



VI.6 Evaluation 159

Bias Type | 1st sense | Train exam. Di.

no bias 18.3 38.0 | +19.7
web bias unsuperv. 33.3 39.8| +6.5
autom. ranking 36.1 432 +7.1
Semcorbias minimally- 47.8 49.8| +2.0
Sensewl2 bias | supervised 55.6 57.5| +1.9

Table VI.5: Performance(recall) on the Senseal-2 lexical-sample,using dif-
ferert biasesto createthe corpus. The type columnshowsthe kind of system.

bias (Train exam.). As we descriled in sectionVI.3, the testing part of the
Sensesl-2 lexical sampledata was usedfor ewvaluation. We alsoinclude the
resultsusing Senseal2 bias, which is taken from the training part. The recall
per word for somedistributions can be seenin table VI.4.

The results show clearly that when bias information from a hand-tagged
corpora is usedthe recall improves signi cantly, even when the bias comes
from a corpus-Semcor-di erent from the target corpus-Sensesl-. The bias
is useful by itself, and we seethat the higher the performanceof the 1st
ranked senseheuristic, the lower the gain using the monosemougorpus. We
want to note that in fully unsupervised mode we attain a recall of 43.2%
with the automatic ranking. Using the minimally supervisedinformation of
bias, we get 49.8%if we have the bias from an external corpus(Semcor)and
57.5%if we have accesgto the bias of the target corpus (Senseal®). This
results show clearly that the acquired corpus has useful information about
the word sensesand that biasis extremely important.

The resultsper word are givenin table VI.6. We canseethat if we do not
usesomekind of sense-distributionalinformation the results for somewords
drop below 10% precisionusing web bias: child, day, grip, ...

We will presen two further experimerts performedwith the monosemous
corpusresource. The goal of the rst will be to measurethe WSD perfor-
mancethat we adhieve using Semcorasthe only superviseddata source. In
our secondexperimert, we will comparethe performanceof our totally un-
supervised approad (monosemouscorpus and automatic bias) with other
unsupervisedapproadesin the Senseal-2 English lexical task.

6Bias obtained from the training-set.
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Unsupervised Supervised
Word No bias | Web bias | Autom. ranking | Semcor bias | Sensewal2 bias
art 34.0 61.1 45.6 55.6 449
authorit y 20.9 22.0 40.0 41.8 46.2
bar 24.7 52.1 26.4 51.6 57.2
bum 36.7 18.8 57.5 5.0 85.0
chair 61.3 62.9 69.4 88.7 88.7
channel 42.2 28.7 30.9 16.2 57.4
child 40.3 1.6 34.7 54.0 58.9
church 43.8 62.1 49.7 48.4 51.6
circuit 44.3 52.8 49.1 41.5 58.0
day 15.3 2.2 125 48.0 60.4
detention 52.1 16.7 87.5 52.1 87.5
dyke 92.9 89.3 80.4 92.9 89.3
facility 19.6 26.8 22.0 26.8 21.4
fatigue 58.8 73.8 75.0 82.5 82.5
feeling 27.2 51.0 42.5 60.2 60.2
grip 11.3 8.0 28.2 16.0 38.0
hearth 57.8 37.5 60.4 75.0 75.0
holiday 70.4 7.4 72.2 96.3 96.3
lady 24.3 79.3 23.9 80.4 73.9
material 51.7 50.8 52.3 54.2 42.9
mouth 39.5 39.5 46.5 54.4 39.5
nation 80.6 80.6 80.6 80.6 80.6
nature 21.9 44.4 34.1 46.7 40.7
post 36.8 47.4 47.4 34.2 40.5
restraint 26.3 9.1 314 27.3 37.1
sense 44.8 18.6 41.9 47.7 48.8
spade 74.2 66.1 85.5 67.7 74.2
stress 38.6 52.6 27.6 2.6 48.7
yew 70.4 85.2 77.8 66.7 81.5
Overall 38.0 39.8 43.2 49.8 57.5

Table VI.6: Performance(recall) on the Senseal-2 lexical-sampleper word,
using di erent biasesto createthe corpus.

VI1.6.1 Monosemousapusand Semco bias

In this experimert we comparedthe performanceusingthe monosemougor-
pus (with Semcorbias and minimum ratio), and the examplesfrom Semcor.
We noted that there werecleardi erencesdependingon the number of train-
ing examplesfor ead word, therefore we studied eat word-set described in
section VI.3 separately The results per word-set are showvn in table VI.7.
The gures correspnd to the recall training in Semcor,the web-corpus,and
the combination of both.

If we focuson set B (words with lessthan 10 examplesin Semcor),we
seethat the MFS gure is very low (40.1%). There are somewords that do
not have any occurrencein Semcor,and thus the senses chosenat random.
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Semcor + | MFS &
W ord-set MFS | Semcor | Web Web Web
setA (> 10) | 51.9 | 50.5 50.9 | 51.6 51.9
setB (< 10) | 40.1 | - 47.7 | 47.8 47.8
all words 478 | 474 49.8 | 50.3 50.5

Table VI.7: Recall training in Semcor,the acquired web corpus (Semcor
bias), and a conbination of both, comparedto that of the SemcorMFS.

It made no senseto train the DL for this set, thereforethis result is not in
the table. For this set, the bias information from Semcoris also scarce,but
the DLs trained on the web-corpusraisethe performanceto 47.8%.

For set A, the averagenumber of examplesis higher, and this raisesthe
results for SemcorMFS (51.9%). We seethat the recall for DL training
in Semcoris lower that the MFS baseline(50.5%). The main reasonsfor
theselow results are the di erences betweenthe training and testing corpora
(Semcorand Senseal). There have been previous works on portability of
hand-taggedcorpora that shov how someconstrairts, like the genreor topic
of the corpus, a ect heavily the results (Martinez and Agirre, 2000). If we
train onthe web-corpusthe resultsimprove, and the bestresultsare obtained
with the conbination of both corpora, reating 51.6%. We needto note,
howeer, that this is still lower than the SemcorMFS.

Finally, we will examinethe results for the whole set of nounsin the
Senseal-2 lexical-sample(last row in table VI.7), wherewe seethat the best
approad relies on the web-corpus. In order to disambiguate the 29 nouns
using only Semcor,we apply MFS whenthere are lessthan 10 examples(set
B), and train the DLs for the rest.

The resultsin table V1.7 show that the web-corpusraisesrecall, and the
best results are obtained conbining the Semcordata and the web examples
(50.3%). As we noted, the web-corpusis specially usefulwhenthere are few
examplesin Semcor(set B), thereforewe made another test, using the web-
corpusonly for set B, and applying MFS for set A. The recall was slightly
better (50.5%), asis shavn in the last column.
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V1.6.2 Monosemougapusand Automatic bias(unsupervised
methad)

In this experimert we comparedthe performanceof our unsupervisedsystem
with other approades. For this goal, we usedthe resourcesavailable from
the Senseal-2 competition, wherethe answers of the participating systems
in the di erent tasks were available’. This made possibleto compare our
resultsand those of other systemsdeemedunsupervisedby the organizerson
the sametest data and set of nouns.

From the 5 unsupervised systemspresetted in the Senseal-2 lexical-
sampletask as unsupervised, the WASP-Bench systemrelied on lexicogra-
phersto hand-cae information semi-automatically (Tugwell and Kilgarri,
2001). This systemdoesnot usethe training data, but asit usesmanually
coded knowledgewe think it falls clearly in the supervisedcategory

The resultsfor the other 4 systemsand our own are shovn in table VI.8.
We show the results for the totally unsupervisedsystemand the minimally
unsupervisedsystem(Semcorbias). We classi ed the UNED system
(Fernandez-Amoroset al., 2001) as minimally supervised. It does not use
hand-taggedexamplesfor training, but someof the heuristics that are ap-
plied by the systemrely on the bias information available in Semcor. The
distribution of senseds usedto discard low-frequency senses,and also to
choosethe rst senseas a bak-o strategy. On the sameconditions, our
minimally supervisedsystemattains 49.8recall, nearly 5 points more.

The rest of the systemsare fully unsupervised,and they perform signi -
cartly worsethan our system.

VI.7 Conclusions

This chapter exploresthe large-scaleacquisition of sense-taggedexamples
for WSD, which is a very promising line of researt, but remainsrelatively
under-studied. We have applied the \monosemousrelatives” method to con-
struct automatically a web corpuswhich we have usedto train three systems
basedon DL: onefully supervised(applying examplesfrom Semcorand the
web corpus), oneminimally supervised(relying on the distribution of senses
in Semcorand the web corpus) and another fully unsupervised (using an

"http://www.senseyv al.org
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Metho d Type | Recall
Web corpus (Semcor bias) minimally- 49.8
UNED supervised 45.1
Web corpus (Autom. bias) 43.3
Kenneth_Litk owski-clr-Is unsupervised 35.8
Haynes-IIT2 27.9
Haynes-IIT1 26.4

Table VI.8: Our minimally supervisedand fully unsupervisedsystemscom-
paredto the unsupervised systems(marked in bold) in the 29 noun subset
of the Senseal-2 Lexical Sample.

automatically acquiredsenserank and the web corpus). Those systemswere
tested on the Senseal-2 lexical sampletest set.

We have shown that the fully supervisedsystemconbining our web cor-
pus with the examplesin Semcorimprovesover the samesystemtrained on
Semcoralone. This improvemern is specially noticeablein the nouns that
have lessthan 10 examplesin Semcor. Regardingthe minimally supervised
and fully unsupervisedsystems,we have shown that they perform well bet-
ter than the other systemsof the samecategory presered in the Sensesl-2
lexical-samplecompetition. The systemcanbetrained for all nounsin Word-
Net, using the data collectedfrom the web, and it is publicly available®.

The researt also highlights the importance of bias. Knowing how many
examplesare to be fed into the ML systemis a key issue. We have explored
seeral possibilities, and we have seenthat assigningdirectly the rst sense
in a ranking obtained from hand-taggeddata (or even with automatic means
on raw corpora) can be a good approximation for disambiguation. However,
the DL algorithm is always able to improve this heuristic training on the
automatically acquiredexamples.

We think that this researth opensthe opportunity for further improve-
merts. We have to note that the MFS heuristic and the supervisedsystems
basedon the Senseal-2 training data are well aheadof our results, and our
researb aims at investigating ideasto closethis gap. Someexperimerts in
the line of adding automatically retrieved examplesto available hand-tagged
data (Semcorand Senseal-2) have beenexplored. The preliminary results
indicate that this processhasto be performedcarefully, taking into accourt

8http://ixa2.si. ehu.e s/ pub/s ensecorpus
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the bias of the sensesand applying a quality-chedk of the examplesbefore
they are included in the training data.

In orderto improve the system,in the future we would like to apply more
powerful ML methods, like the ensenble constructed on chapter V. We
would alsolike to tune the algorithm that choosesthe monosemouselatives,
giving preferencefor instance,to multiw ordsthat cortain the target word as
in (Leacak et al., 1998). The method could alsobene t from sophisticated
toolsto acquireexamplesthat are now available, like ExRetriever (Fernandez
et al., 2004), which could open the way to exampleswith less noise and
better performance. Another ideato enrich the systemwould be to retrieve
examplesby queriesbasedon collocations. Thesecollocations would have a
strongrelation with speci ¢ sensesand could be detectedwith the smoothing
techniquesdescriled in chapter V.

We would alsolike to apply this method for new languagesand testbeds.
An interesting approad could be to retrieve examplesfor languagesthat
court on lexical databasedike WordNet, but do not have an all-words sense-
taggedcorpora (e.g. Basque). Moreover, now that the monosemousorpus
is available for all nounsin English, we would like to test the system on
the all-words task, analyzing specially words with low amourts of available
hand-taggeddata.

Finally, wewant to note that our resultssuggesthat thereis a portabilit y
problem when extending hand-taggedcorpora with new examples(seealso
(Escuderoet al., 2000c)). In this chapter, we have addressedhe problem by
meansof sense-rankingspbtained from hand-taggeddata and automatically.
However, in order to construct a robust system,we should take into accoun
how the changeof corpora and domain a ects WSD performance. We will
addressthis issuein the next chapter, relying on the DSO corpus, which
contains examplesfrom two di erent corpora (BC and WSJ).
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Portabilit y and genre/topic of corp ora

VII.1 Introduction

The previous chapter has presetned us the di culties of extending available
hand-taggeddata by automatic means.We emphasizedhe importanceof the
bias of the sensedistribution, and we showed that, without someprior infor-
mation, the performancedropsdramatically whentraining on automatically-
acquiredexamples.Howeer, anotherfactor that hasto betakeninto accoun
when we add new examplesto a corpusis portability. In previouswork, the
application of WSD systemstrained on a given corpusto be tested on a
di erent one has shavn a drop in performance,even when applying tuning
techniques(Escuderoet al., 2000c). One of the drawbadks of using di erent
corpora, highlighted by Ng et al. (1999), is that when the hand-tagging of
the samecorpusis performed by independen teams of researbers there is
low inter-tagger agreemeh Another important issueis the fact that new
examplescomeusually from di erent genreand topics.

In order to be ableto alleviate the knowledgeacquisition bottlenedk and
extend our corpora, we have to study the reasonsfor this degradation of
performance. In the early nineties, two famous papers claimed that the
behavior of word sensedn texts adheredto two principles: one senseper
discourse(Gale et al., 1993)and onesenseper collocation (Yarowsky, 1993).
The rst constrairt statesthat wordsthe occurrencesof a word tend to have
the samemeaningin a given discourse.The \one senseper collocation™ rule
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mantains that the collocations in the nearby cortext cortain strong clues
that sere to determin the meaning of a word. These principles (specially

the second)have beenwidely usedto construct supervised WSD systems.
The hypothesesnereshowvn to hold for someparticular corpora (totaling 380
Mwords) on words with 2-way ambiguity. The word sensedistinctions came
from di erent sources(translations into Frendh, homophoneshomographs,
pseudo-verds, etc.), but no dictionary or lexical resourcewaslinked to them.

In the caseof the \one senseper collocation” paper, seweral corpora were
used, but no study was doneto shav whether the collocations hold across
corpora. We think that revisiting thesehypothesesn the presen framework

of supervisedWSD (with ne-grained sensedistinctions and new resources),
could provide us insight on the portability of WSD systems.

Krovetz (1998)shonved that the \one senseoer discourse"hypothesisdoes
not hold for ne-grained sensesn SemCorand DSO, as 33% of the wordsin
thesecorpora had multiple meaningsin the samediscourse.His results have
beencon rmed in our own experimerts. We will therefore conceitrate on
the \one senseper collocation" hypothesis,consideringthesetwo questions:

1. Doesthe collocation hypothesishold for ne-grained sensedistinctions
(comparedto homographlevel granularity)?

2. Does the collocation hypothesis hold acrosscorpora, that is, across
genreand topic variations (comparedto a singlecorpus, probably with
little genreand topic variations)?

In order to try to answer the above questions,we will rely on the DSO
collection(cf. sectionll.3), which comprisegexts from two di erent corpora:
BC and WSJ. We will rst comparethe strength of the \one senseper collo-
cation" hypothesisin cross-corpra tagging with the gures obtained using
one single corpus. Then we will measurethe e ect of the discourse(deriv-
ing training and testing examplesfrom the samedocumeris) on the results.
Finally, we will test the in uence of the genreand topic of the examplesin
WSD performanceacrossdi erent sectionsof the BC, which cover di erent
genresand topics. We think that this study will highlight the factors that
comeinto play when porting a WSD systemto a new corpus,and help us to
build more robust WSD algorithms.

This chapter is organizedasfollows. SectionVI 1.2 described related work
on portability of WSD systems. The resourcesisedand the experimertal set-
tings are presened in sectionVI1.3. SectionVI1.4 preseits the collocations
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considered.SectionsVI 1.5 and VI 1.6 shaw the in-corpusand cross-corpra ex-
perimerts, respectively. SectionVI1.7 discusseshe e ect of drawing training
and testing data from the samedocumerts. SectionVI1.8 evaluatesthe im-
pact of genreand topic variations, which is further discussedn sectionVI1.9.
Finally, sectionVI1.10 preseits someconclusions.

VIl.2 Relatedwvork

The portability of large-scalehand-taggedcorpora was rst analyzedin the
work by Ng et al. (1999). This work relied on the overlapping examplesin the
DSO and Semcorcorpora, which belongedto the BC corpus. They measured
the tagger agreemen for the two teams that deweloped DSO and Semcor.
They report low values both in precision (56.7%) and Kappa coe cien t!
(0.317). They also presemn an algorithm that builds coarsersensedgrom the
human annotations, and they suggestthat this inverntory can be usedto
better evaluate WSD algorithms.

Escuderoet al. (2000c) perform a set of experimerts on cross-corpra
tagging using four di erent ML methods (including AB and NB). They test
the portability of the systemsusing the two parts of DSO: WSJ and BC.
These corpora is conbined in seweral ways; for instance, training on the
whole DSO and testing on BC. They apply cross-alidation when training
and testing parts overlap. The results reported in cross-corpra tagging are
low, in somecaseshelon the MFS baseline.In another experimert from this
article, they tested a tuning method that consistedon including for training
someexamplesfrom the target corpus. The goalwasto test whether having
some examplesfrom the target corpus would be enoughto prot from a
di erent corpus. They analyzedthe learning curve, adding more examples
from the target at eat step. The resultswere not good, asAB wasthe only
ML method that pro ted slightly from the di erent corpus.

In their analysis, Escuderoet al. (2000c) studied the di erences in the
sensedistributions in WSJ and BC, but they did not take into accourt the
di erent genreand topic of the documerts. While in the WSJ corpus all
the texts comefrom pressatrticles, the BC is balanced,with somesections
belongingto the \press" domain (cf. sectionll.3). We usedthis information

1The Kappa coe cien t measuresthe agreemem betweenannotators after factoring out
the e ect of chanceagreemen. A value of O indicates that the agreemetn is purely due to
chance,while the maximum value of 1 indicates full agreemet.
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for our work on this chapter, in order to study the e ect of the domain on
portabilit y.

In (McCarthy et al., 2004),they implemert a method to obtain automat-
ically a ranking of sensedor the corpusthey want to disambiguate. The
algorithm, which we descrited brie y in sectionVI.5.2, proceedsbuilding a
thesauruswith the method from (Lin, 1998a),and applying WordNet-based
similarity measures.As it is shown in their experimerts, the algorithm is able
to acquire information of the preferred sensedor di erent domains. They
note that the rst senseheuristic is usedby many WSD systemsas badk-0
strategy (specially for all-words tasks), and it is also applied for lexical ac-
quisition. We already appliedthis technique in chapter VI, in orderto obtain
bias information for the automatic acquisition of examplesfrom the web. As
we showed, using their ranking method and the examplesfrom the web, we
were able to build a totally unsupervised WSD systemthat outperformed
other systemsin the Senseal-2 English lexical-sampletask. We think that
the technique from (McCarthy et al., 2004) o ers promising results for the
portability of WSD systems.

VII.3 Experimentaketting

The experimerts in this chapter were performedusing the WSJ&BC setting
(section111.3.3.2), which consistedon the DSO corpora, and the C word-set
(21 nouns and verbs). The two sourcesof the DSO corpus (WSJ and BC)
are usedseparatelyfor cross-taggingexperimerts.

As mertioned earlier, the WSJ cortains pressarticles, and the BC is bal-
anced,with the texts classi ed accordingsomeprede ned categories(as we
canseein sectionll.3). Thesecategorieshave beenpreviously usedin genre
detection experimerts (Karlgren and Cutting, 1994), where ead category
was used as a genre. We think that the categoriesnot only re ect genre
variations but also topic variations (e.g. the Religion category follows topic
distinctions rather than genre). Newerthelesswe are aware that sometopics
can be coveredin more than one category Unfortunately we could not nd
a topically taggedcorpuswhich alsohave word senseags. We thus speak of
genreand topic variation, knowing that further analysiswould be neededto
measurethe e ect of ead of them.

As usual, we use10-fold cross-alidation whentraining and testing on the
samecorpus. When comparingthe performanceon decisionlists trained on
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two di erent corpora (or sub-corpora) we always take an equal amourt of
examplesper word from ead corpora. This is doneto discard the amourt-
of-data factor.

VIl.4 Featureset

In order to test the \one senseper collocation” rule presenied in (Yarowsky,
1993), we will adopt the broad de nition of collocations usedin that work,
which correspnds to the basic feature typeswe are using throughout this
dissertation. Therefore,from now on we will speakindistinctly of collocations
and features, although the term \collo cations" is often applied to refer to
non-comgositional, high-frequencyword co-cccurrences(Firth, 1957). If a
more strict linguistic perspective is taken, rather than collocationswe should
speak about co-cccurrencerelations.

The collocations that we studied were classi ed into three subsets:local
content word collocations, local part-of-speet and function-word colloca-
tions, and global cortent-word collocations. The \lo cal cortent word" subset
is the only onethat would adhereto the narrower de nition of collocation.
We only consideredthose collocations that could be easily extracted from
a part of speed tagged corpus, like \word to left", \word to right", etc.
Local content word collocations comprisebigrams (\w ord to left", \word to
right") and trigrams (\t wo words to left", \t wo words to right", and \b oth
words to right and left"). At least one of those words needsto be a content
word. Local function-word collocations comprise also all kinds of bigrams
and trigrams, asbefore,but the words needto be function words. Local PoS
collocationstake the Part of Speet of the wordsin the bigramsand trigrams.
Finally, global cortent word collocations comprisethe cortent words around
the target word in two di erent corntexts: a window of 4 words around the
target word, and all the words in the sertence. Table VII.1 summarizesthe
collocationsused. Thesecollocations have beenusedin other word sensealis-
ambiguation researb and are alsoreferredto as features(Gale et al., 1993;
Ng and Lee, 1996;Escuderoet al., 2000c).

Comparedto (Yarowsky, 1993),who alsotook into accourt grammatical
relations, we only sharethe content-word-to-left and the cortent-word-to-
right collocations. We did not lemmatize cortent words, and we thereforedo
take into accoun the form of the target word. For instance, governingbody
and governingbodies are di erent collocations for the sake of this chapter.
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Local content word collo cations

Word-to-left Content Word
Word-to-right Content Word
Two-words-to-left

Two-words-to-right At least one Content Word

Word-to-right-and-left
Local PoS and function word collo cations

Word-to-left Function Word&P oS
Word-to-right Function Word&P oS
Two-words-to-left Both Function Words&PoS
Two-words-to-right PoS

Word-to-right-and-left PoS
Global content word collo cations
Word in Window of 4w

Word in sertence

Content Word

Table VII.1: Typesof collocations.

VII.5 In-copusexperiments

We extracted the collocationsin the BC sectionof the DSO corpusand, using
10-fold cross-alidation, taggedthe samecorpus. The sameprocedurewas
followed for the WSJ part. The precisionand coverageresults are shovn in
tables VII1.2 and VI1.3, wherethe collocation groupsare given in bold. We
can obsene the following:

The best kinds of collocations are local cortent word collocations, es-
pecially if two words from the cortext are taken into consideration,
but the coverageis low. Function words to right and left also attain
remarkable precision.

Collocations are stronger in the WSJ, surely due to the fact that the
BC is balanced,and thereforeincludesmore genresand topics. This is
a rst indicator that genreand topic variations have to be taken into
accour.

Collocationsfor ne-grained word-sensesre sensiblywealer than those
reported by Yarowsky (1993) for two-way ambiguouswords. Yarowsky
reports 99% precision,while our highestresults do not read 80%.
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Nouns Verbs Overall

Collo cations Pr. Cov. Pr. Cov. Pr. Cov.
Word-to-righ t 64.4 | 20.3 43.2 | 23.0 56.2 | 21.2
Word-to-left 62.6 | 12.4 77.0 | 139 68.1 | 129
Tw o-words-to-righ t 65.7 | 14.6 50.0 | 10.3 61.3 | 13.1
Tw o-words-to-left 74.0 | 9.2 819 | 12.2 774 | 10.3
Word-to-righ t-and-left 64.7 | 8.8 68.6 | 11.4 66.3 | 9.8
Overall local content 67.5 | 40.5 63.5 | 404 66.1 | 40.5
Word-to-righ t 48.0 | 50.3 45.2 | 40.6 47.1 | 46.8
Word-to-left 41.4 | 63.9 57.2 | 52.7 46.4 | 59.9
Tw o-words-to-righ t 52.0 | 18.3 62.4 | 11.3 54,7 | 15.8
Tw o-words-to-left 42.0 131 64.8 17.3 51.6 14.6
Word-to-righ t-and-left 549 | 23.8 65.4 | 16.0 57.7 | 21.0
PoS-to-right 34.0 | 99.2 35.6 | 99.2 34.6 | 99.2
PoS -to-left 35.0 | 99.4 48.3 | 99.2 39.8 | 99.3
Two- PoS -to-righ t 40.6 | 92.3 422 | 87.6 41.2 | 90.6
Two- PoS -to-left 39.6 | 79.2 53.9 | 89.7 452 | 82.9
PoS -to-righ t-and-left 416 | 92.1 545 | 88.5 46.1 | 90.8
Ov erall local PoS&F un 48.6 100 56.0 100 51.2 100
Word in sertence 54.5 100,0 | 49.2 100,0 | 52.6 100,0
Word in Window of 4 55.0 | 97.2 52,5 | 95.1 54.1 | 96.4
Ov erall global content 54.9 | 100 50.3 | 100 53.3 | 100
OVERALL 57.7 | 100 56.4 | 100 57.2 | 100

Table VII.2: Train on BC, tag BC.

] Nouns Verbs Overall
Collo cations Pr. Cov. Pr. Cov. | Pr. Cov.
Word-to-righ t 76.8 25.4 52.9 26.4 68.0 25.8
Word-to-left 72.4 18.5 86.7 18.2 77.5 18.4
Tw o-words-to-righ t 784 | 19.1 | 623 | 11.3 | 74.4 | 16.3
Tw o-words-to-left 81.1 16.0 86.2 17.9 83.0 16.6
Word-to-righ t-and-left 82.0 | 169 | 72.8 | 129 | 79.3 | 155
Overall local content 76.4 50.2 73.7 | 49.7 75.5 50.0
Word-to-righ t 60.0 45.7 52.7 37.0 57.7 42.6
Word-to-left 545 | 609 | 629 | 47.2 | 57.0 | 56.0
Tw o-words-to-righ t 63.8 | 13.3 | 68.7 | 8.4 65.0 | 11.6
Tw o-words-to-left 60.0 | 14.0 | 65.7 10.8 | 61.7 12.8
Word-to-righ t-and-left 721 | 220 | 694 | 138 | 714 | 191
PoS-to-right 49.0 99.3 48.8 99.3 48.9 99.3
PoS -to-left 46.5 | 99.1 | 584 | 99.4 | 50.8 | 99.2
Two- PoS -to-righ t 52.6 91.8 53.4 87.9 52.9 90.4
Two- PoS -to-left 51.8 | 82.2 | 61.4 | 91.2 | 555 | 854
PoS -to-righ t-and-left 55.5 91.8 63.4 89.1 58.3 90.8
Overall local PoS&F un 62.2 100 64.0 | 100 62.9 100
Word in sertence 61.1 100 57.2 | 100 59.7 100
Word in Windo w of 4 62.7 97.9 61.1 97.5 62.2 97.7
Overall global content 61.7 | 100 58.0 | 100 60.4 | 100
OVERALL 66.1 | 100 63.5 | 100 65.2 | 100

Table VII.3: Train on WSJ, tag WSJ.
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It hasto be notedthat the test and training examplescomefrom the same
corpus, which meansthat, for sometest casesthere are training examples
from the samedocumen. In somesensewe can sa that one senseper
discoursecomesnto play. This point will befurther exploredin sectionVI1.7.

In the rest of this chapter, only the overall results for ead subsetof the
collocations will be shovn. We will pay special attention to local-cortent
collocations, asthey are the strongest,and alsocloserto strict de nitions of
collocation.

As an exampleof the learnedcollocations, table VI 1.4 shovs somestrong
local content word collocationsfor the noun state and gure VI1.1 shavsthe
word sensef state (6 out of the 8 sensesare shovn as the rest were not
presen in the corpora).

1. state -- (the group of people comprising the government of a
sovereign state)

2. state, province -- (the territory occupied by one of the
constituent  administrative  districts of a nation)

3. state, nation, country, land, commonwealth, res publica, body
politc - (a politically organized body of people under a
single government)

4. state -- (the way something is with respect to its main
attributes)

5. Department of State, State Department, State -- (the federal
department that sets and maintains foreign policies)

6. country, state, land, nation -- (the territory occupied by a
nation)

Figure VI1.1: Word sensedor state in WordNet 1.6 (6 out of 8 are shavn).

VII.6 Cross-agora exgeriments

In theseexperimerts we train on the BC and tag the WSJ corpusand vice
versa. TablesVI 1.5 and VI 1.6, whencomparedto tablesVI1.2 and VI1.3 shaov
a signi cant drop in performance(both precisionand coverage)for all kinds
of collocations (we only showv the results for eat subsetof collocations).
For instance,table VII1.5 showvs a drop in 16%in precisionfor local corntent
collocations when comparedto table VII.3.
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Senseof state
Collo cation Log w1 | #2 | #3 | #a | #5 | #6
State government 3.68 | - - - - 4 -
six states 3.68 4
State 's largest 3.68 | - - - - 4 -
State of emergency 3.68 | - 4 - - - -
Federal , state 3.68 | - - - - 4
State , including 3.68 | - - - - 4 -
Current state of 340 | - 3 - - - -
State aid 3.40 | - - - 3
State where Farmers 340 | 3 - - - - -
State of mind 3.40 | - 3
Current state 3.40 | - 3 - -
State thrift 340 | - - - 3 - -
Distributable state aid | 3.40 | - - - 3 - -
State judges 3.40 | - - - - 3 -
a state court 3.40 | - - 3 -
said the state 340 | - - - - 3
Seweral states 3.40 | - - - - 3 -
State monopolies 3.40 | - - - 3 - -
State laws 340 | - - 3 -
State aid bonds 3.40 | - - - 3
Distributable state 340 | - - - 3 - -
State and local 2.01 | - - 1 1 15 -
Federal and state 1.60 | - - - 1 5 -
State court 1.38 | - - 12 - 3
Other state . 138 | 4 - 1
State governments 1.09 | 1 - - - 3 -

Table VI1.4: Local content-word collocations for state in the WSJ. For eath
senseand collocation, the number of examplesis given.

Theseresultscon rm thoseby Escuderoet al. (2000c)who concludethat
the information learnedin one corpusis not usefulby itself to tag the other.

In orderto analyzethe reasonfor this performancedegradation,we com-
paredthe local cortent word collocations extracted from one corpusand the
other. TableVII.7 shovsthe amourt of collocationsextracted from ead cor-
pus, how many of the collocations are sharedon averageand how many of
the sharedcollocationsare in cortradiction. The low amourt of collocations
shared between both corpora could explain the poor gures, but for some
words (e.g. point) there is a worrying proportion of cortradicting colloca-
tions.

We inspected someof the cortradicting collocations and saw that in all
the casesthey were causedby errors (or at least di ering criteria) of the
hand-taggerswhen dealing with words with di cult sensedistinctions. For
instance, table VI1.8 shavs somecollocations of point which receiwe cortra-
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Nouns Verbs Overall

Pr. Cov. | Pr. Cov. | Pr. Cov.
Overall local content 59.7| 33.8 | 59.1| 35.6 | 59.5 | 34.4
Overall local PoS&Fun | 47.8 | 99.9 | 49.1| 99.7 | 48.3 | 99.8
Overall global content | 44.2 | 100 | 45.5| 99.9 | 44.7 | 100
OVERALL 485 | 100 | 49.7 | 100 | 48.9| 100

Collocations

Table VII.5: Cross-corpra tagging: train on BC, tag WSJ.

Nouns Verbs Overall

Pr. Cov. | Pr. Cov. | Pr. Cov.
Overall local content 51.2| 27.3 | 55.6 | 33.6 | 53 29.5
Overall local PoS&Fun | 42.1 | 100 | 48.6 | 100 | 44.4| 100
Overall global content | 39.2 | 100 | 42.3 | 100 | 40.3 | 100
OVERALL 429 | 100 | 48.3| 100 | 44.8 | 100

Collocations

Table VII.6: Cross-corpra tagging: train on WSJ, tag BC.

dictory sensesn the BC and the WSJ. The collocation point of view, for
instance, is assignedhe fourth sensein 13 out of 15 occurrencesn the BC,
and the secondsensen all 19 occurrencesn the WSJ.

We can therefore conclude that the \one senseper collocation” holds
acrosscorpora, becausethe contradictions found were due to tagging errors.
The low amourt of collocations in commonwould explain by itself the low
gures on cross-corpra tagging.

But yet, we wanted to further study the reasonsfor the low number of
collocations in common, which a ects the cross-corpra performance. We
thought of di erent factors that could comeinto play:

a. E ect of discourse:the training and test examplesfrom the in-corpus
experimerts are taken at random, and they could be drawn from the
samedocumert. This could make the results appear better for in-
corpora experimerts. On the cortrary, in the cross-corra experi-
merts, training and testing examplescomealways from di erent doc-
umerts.

b. Genre and topic changescausedby the shift from one corpusto the
other.
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Word PoS Coll. BC Coll. WSJ | % Coll. Shared | % Coll. Contradict.
Age N 45 60 27 0
Art N 24 35 34 20
Body N 12 20 12 0
Car N 92 99 17 0
Child N 77 111 40 05
Cost N 88 88 32 0
Head N 77 95 07 33
Interest N 80 141 32 33
Line N 110 145 20 38
Point N 44 44 32 86
State N 196 214 28 48
Thing N 197 183 66 52
Work N 112 149 46 63
Become | V 182 225 51 15
Fall \% 36 68 19 60
Grow Vv 61 71 36 33
Lose Vv 63 56 47 43
Set \% 94 113 54 43
Speak Y 34 38 28 0
Strik e \ 12 17 14 0
Tell Vv 137 190 45 57

TableVI11.7: Collocationssharedand in cortradiction betweenBC and WSJ.

' BC WSJ
Collocation #2 | #4 | Others | #2 | #4 | Others
important point | 3 0 0 0 2 0
point of view 1 13 |1 19 | 0 0

Table VII1.8: Contradictory senseof point in BC and WSJ.

c. Corpora have intrinsic featuresthat cannot be captured by solegenre
and topic variations.

d. The sizeof the data, being small, would accourt for the low amount of
collocations shared.

We explore the factor a) in sectionVII.7, and b) in sectionVII.8. The
latter points c¢) and d) are discussedn sectionVI1.9.

VII.7 E ect of discourse

In orderto test whetherdrawing training and testing examplesfrom the same
documert explainsthe di erent performancein in-corpora and cross-corpra
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tagging, we performedthe following experimert. Instead of organizingthe 10
random subsetsfor cross-alidation on the examples,we chose 10 subsetsof
the documerts (alsoat random). This way, the testing examplesand training
examplesare guararteed to comefrom di erent documenrs. We also think
that this experimert would shov morerealistic performance gures, asareal
application should not expectto nd examplesfrom the documeris usedfor
training.

Unfortunately, there are not any explicit documert boundaries, neither
in the BC nor in the WSJ. In the BC, we took les as documerts, ewen if
les might cortain more than one excerpt from di erent documens. This
procedureguararteesthat documen boundariesare not crossed. It hasto
be noted that following this organization the target exampleswould share
fewer examplesfrom the sametopic. The 168 les from the BC weredivided
in 10 subsetsat random: we took 8 subsetswith 17 les and 2 subsetswith
16 les.

For the WSJ, the only cue was the directory organization. In this case
we were unsureabout the meaningof this organization, but hand inspection
shaved that documen boundarieswere not crossingdiscourseboundaries.
The 61 directories were divided in 9 subsetswith 6 directoriesand 1 subset
with 7.

Again, 10-fold cross-alidation was usedon these subsetsand the results
in tables VII.9 and VII1.10 were obtained. The tables showv the results per
eat part of speet usingthe main collocation groups: all the features(over-
all), and the local cortent features. The Di. column shaws the changein
precision with respect to tables VII1.2 and VI1.3, which separatethe folds
accordingto examplesinstead of documerts.

Table VI1.9 shaws that for the BC, precisionand coverageare degraded
signi cantly, comparedto table VI1.2. On the cortrary, the results for the
WSJ are nearly the same(cf. tablesVI1.10 and VI11.3).

The resultsfor WSJ indicate that drawing training and testing data from
the sameor di erent documerts in itself doesnot a ect somuch the results.
The degradationof the BC resultscould be explainedby the greatervariation
in topic and genre. This factor will be further studied in sectionVI1.8.

Finally, table VI1.11 summarizesthe overall results on WSJ and BC for
eadt of the di erent experimerts performed. The gures shaw that drawing
training and testing data from the sameor di erent documerts would not in
any caseexplain the low gures in cross-corpra tagging.
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Overall Local content
POS Tor Tcov. [Di. | Pr. | cov. | Di.
N 499 | 100 | -7.8 | 57.3| 30.7 | -10.2
\Y 5431 100 | -2.1 | 60.8| 37.9 | -2.7
Overall | 51.4| 100 | -5.8 | 58.7| 33.3 | -7.4

Table VII.9: Train on BC, tag BC, cross-alidation accordingto les.

Overall Local content
PSS Tor Tcov. [ Di. | Pr. | cov. | Di.
N 65.0| 100 | -1.1 | 76.2 | 48.6 | -0.2
Vv 63.4| 100 | -0.1 | 69.7| 494 | -4.0
Overall | 64.4| 100 | -1.1 | 73.8| 48.9 | -1.7

Table VII.10: Train on WSJ, tag WSJ, cross-alidation accordingto les.

Testing Corpus | In-corpora(examples) | In-corpora(les) | Cross-corpora
BC 57.2 51.4 44.8
WSJ 65.2 64.4 48.9

Table VII.11: Overall resultsin di erent experimerts tagging WSJ and BC
(overall features).

VII.8 E ect of genre/topicvaiations

Trying to shed some light on this issue, we obsened that the category
press:eprtage in BNC, is related to the genre/topic of the WSJ. We there-
fore designedthe following experimert: we taggedead categoryin the BC
with the DLs trained on the rest of the categoriesin the BC, and also with
the DLs trained on the WSJ.

TablesVI11.12 and VI11.13 show respectively the results for the local con-
tent collocation and the overall collocation set. As the latter sethasfull cov-
erage,only precision gures are given. For local content-word collocations,
table VII1.12 illustrates that training on the WSJ attains the best precision
and coveragefor press:eprtage both comparedto the results for the other
categoriesandto the resultsreadedby the rest of the BC on press:eportage

Thereforewe can say that:
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1. From all the categories,the local cortent collocations from press: re-
portage are the most similar to those of WSJ.

2. WSJ contains collocationswhich are closerto thoseof press: reportage,
than those from the rest of the BC.

As for table VI1.13, we seethat introducing the whole set of collocations
(with wealer collocations that have higher coverage)shons somechangesin
the results. In this case,the better performing category when training on
WSJ is not press:eportage although it is betweenthe best. Howewer, we see
that this categoryis the only to improve (together with Miscellaneous) when
trained on WSJ, as happenedwith local features.

In this table, we can seethat the inclusion of weak featuresincreaseghe
overlapping betweenthe collocations for all categories,at the cost of being
lessreliable. This factor will normally decreasethe precision, although for
somecategoriesthesefeatureswork surprisingly well (Mystery, Humor, ...).
The e ect of the genre/topic is lessnoticeablein theseconditions, however,
the results shav again that the press:ertage categoryin the BC is more
related to the WSJ corpusthan to the rest of BC. In other words, having
related genre/topic helps having common collocations, and therefore better
WSD performance.

VII.9 Discussion

The goal of sectionsVIIL.7 and VII.8 was to explore the possible causes
for the low number of collocations in common betweenBC and WSJ. Sec-
tion VII.7 concludesthat drawing the examplesfrom dierent les is not

the main reasonfor the degradation. This is specially true whenthe corpus
has low genre/topic variation (e.g. WSJ). Section VI1.8 shaws that shar-
ing genre/topic is a key factor, asthe WSJ corpus attains better results on

the press:eportage category than the rest of the categorieson the BC it-

self. Texts on the samegenre/topic share more collocations than texts on

disparate genre/topics, even if they comefrom di erent corpora.

This seemdo alsorule out explanation c) in sectionVI1.6 (corpora have
intrinsic featuresunattainable from di erent sources),asa good measureof
topic/genre similarity would help overcomecross-corpra problems.

That only leavesthe low amourt of data available for this study (expla-
nation d). It is true that data scarcity can a ect the number of collocations
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Train on WSJ | Train on rest of BC
Testing BC Category

prec. | cov. prec. | cov.
Press: Reportage 62.5 | 33.0 54,1 | 285
Skills and Hobbies 56.9 | 29.6 57.1 | 30.2
Romanceand ... 56.1 | 27.1 595 | 34.0
Adventure and ... 55.1 | 22.3 70.2 | 31.2
Miscellaneous 534 | 3211 534 | 304
General Fiction 525 | 23.9 60.5 | 32.1
Mystery and ... 523 | 24.3 61.8 | 36.9
Learned 51.8 | 25.7 56.3 | 28.0
Humor 51.6 | 32.1 52.4 | 33.7
Belles Lettres, ... 516 | 27.2 524 | 31.4
Press: Editorial 50.4 | 28.3 59.3 | 334
Popular Lore 48.8 | 304 56.3 | 35.3
ScienceFiction 459 | 21.1 58.6 | 30.7
Press: Reviews 43.8 | 26.8 48.8 | 40.4
Religion 40.9 | 30.6 53.7 | 32.6

Table VI1.12: Tagging di erent categoriesin BC (local cortent features).
Resultssorted by precisiontraining on WSJ. Best precisionresultsare shovn
in bold.

Testing BC Category | Train on WSJ | Train on rest of BC
Mystery and ... 55.1 66.4
Humor 52.0 57.0
Adventure and ... 49.7 62.8
Press: Reportage 48.3 45.7
Miscellaneous 475 40.2
Romanceand ... 47.0 56.5
Popular Lore 46.4 50.7
General Fiction 44.6 575
Press: Editorial 441 46.4
Learned 43.8 46.1
Skills and Hobbies 435 46.8
ScienceFiction 41.0 56.5
Belles Lettres, ... 40.9 47.8
Press: Reviews 40.9 42.9
Religion 37.2 45.8

Table VII1.13: Precisiontagging di erent categoriesin BC (overall features).
Resultssorted by precisiontraining on WSJ. Best precisionresultsare shovn
in bold.
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shared acrosscorpora. We think that larger data will make this number
grow, especially if the corpusdraws texts from di erent genresand topics.
Newerthelessthe gures in table VII.12 indicate that evenin theseconditions
genre/topic relatednesswould helpto nd commoncollocations.

VII.10 Conclusions

This chapter shows that the one senseper collocation hypothesisis wealer
for ne-grained word sensedistinctions (e.g. thosein WordNet): from the
99% precisionmertioned for 2-way ambiguities in (Yarowsky, 1993)we drop
to 70% gures. These gures could perhapsbe improved usingmore available
data.

We also show that one senseper collocation does hold acrosscorpora,
but that collocations vary from one corpus to other, following genre and
topic variations. This explainsthe low results when performing word sense
disanbiguation acrosscorpora. In fact, we demonstrated that when two
independert corpora sharea related genre/topic, the WSD resultsare better.

This has considerableimpact in future work on WSD, as genre and
topic are shavn to be crucial parameters. A systemtrained on a specic
genre/topic would have di culties to adapt to new genre/topics. Besides,
methodsthat try to extendautomatically the amourt of exampledor training
needalsoto accoun for genreand topic variations. We think that techniques
like the one preserted in (McCarthy et al., 2004) can help to adapt WSD
systemsto new domains.

As a sidee ect, we have shavn that the results on cross-alidation WSD
exerciseswhich mix training and test data drawn from the samedocumerts,
are higherthan thosefrom a morerealistic setting. We alsodiscoreredse\eral
hand-taggingerrors, which distorted extracted collocations. We did not eval-
uate the extert of theseerrors, but they certainly a ected the performance
on cross-corpra tagging.

In order to extend this work, one of the factors that should be analyzed
is the separatein uence of the genreand topic variations. The behaviour
of di erent words through di erent corpora should also be addressed. Fi-
nally, ways to integrate genre/topic parametersinto the WSD models have
to be devisedin order to build a generalWSD system, as well as for lexical
acquisition methods.
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Conclusions

We started this dissertation motivating a WSD tool in order to get more
insight in our way to automatic natural languageunderstanding. As we
pointed out in the introduction, there are seeral complexfactors that have
to be addressedor this task. We tried to erumerate the main issuesinvolv-
ing this problem in the introduction chapter, and the dissertation has been
organizedaround thesepoints:

1. The description of the problem: Explicit WSD with a closedlist of
sensesnay not bea correctway to modelthe intermediatetask required
for NLP.

2. The selectionof a senseinvertory: It is important that the sensef
the words are represeted with a good level of generalization,in order
to be usefulfor NLP applications.

3. The application of ML algorithms: When choosing the methods that
are being adapted from the ML community, the peculiarities of the
WSD problem have to be taken into accour.

4. The feature setsusedto model the language: In order to be robust,
the ML methods should rely in as much information from the texts as
possible. Featuresobtained with complex analysis of the text (mor-
phological, syntactic, semaitic, domain, etc.) and the combination of
di erent typesof featurescould be used.
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5. The sparsedata problem: In NLP most of the ewerts occur rarely,
evenwhenlarge quartities of training data are available. This problem
is specially noticeablein WSD, where hand-taggeddata is di cult to
obtain.

6. Needfor extratraining data: Existing hand-taggedcorporado not seem
enoughfor currert state-of-the-art WSD systems.Hand-taggeddata is
di cult and costlyto obtain. Estimations of the requiredtagginge ort
are not optimistic, and methods to obtain data automatically should
be explored.

7. Portability. The porting of the WSD systemsto betestedonadi erent
corpora than the one usedfor training alsopreselits di culties. Previ-
ouswork (Ng et al., 1999;Escuderoet al., 2000c)hasshawvn that there
is a lossof performancewhen training on one corpora and testing on
another. This has happenedwith automatically-tagged corpora, and
alsowith corpora hand-taggedby independen teams of researbers.

In this dissertation, we have focusedon the points 3{7, and the two rst
issuesare out of the scope of our researb. As we said in the introduc-
tion, there are other ways to approad the lexical ambiguity problem (see
for instance (Kilgarri and Tugwell, 2002)), but we exploredthe supervised
approad to explicit WSD.

Thus, the points 3{7 comprisethe main cortents of the dissertation: base-
line WSD system, feature types, smaothing, acquisition of examples,and
portability. This book has beenorganizedas follows: the issues3 and 5 in
the list (ML methods and sparsedata problem) wereaddressedn chapter V;
and eadt of the other issueswas coveredin a separatechapter with the same
number they have in the list.

From the experimerts on eat of the aspectsof supervisedWSD, we were
able to extract someconclusions. We will try rst to summarizewhat we
considerthe main cortributions of this dissertation, and then, in a more fo-
calizedway, we will descrike the conclusionsderived from ead of the studied
issues.
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VIIl.1 Contribution®f ourwork

We will now describe the main cortributions of this work, which werealready
advancedin chapter I. Wewill rst presen the main research results , and
then we will introduce the tools and resourcesthat have beenbuilt during
this work:

Syntactic features: In chapter IV, we exploredthe cortribution of
an extensiwe set of syntactic featuresto WSD performance. The ex-
perimerts shoved that basic and syrtactic features cortain comple-
mentary information, and that their integration is useful for WSD.
The study included two di erent ML methods (DL and AB), and a
precision/coveragetrade-o systemusing di erent feature types. The
cortribution of syntactic featuresis specially noticeable for the algo-
rithm AB in the standard setting, and for DLs when applying the
precision/coveragetrade-o .

Semantic features: Alsoin chapter 1V, we applied two approadesto
study the cortribution of semarnic featuresusingthe WordNet hierar-
chy and the Semcorall-words corpus. On the onehand, we constructed
newfeaturetypesbasedon the synsetssurroundingthe target word, the
hypernyms of thesesynsets(at di erent levels), and also their seman-
tic les. On the other hand, we learneddi erent models of selectional
preferencedgor verbs,usingthe relationsextracted from the Semcorcor-
pus by Minipar. Our main conclusionswere that the \bag-of-synsets"
approad that we applied does not improve the results; howewer, se-
lectional preferenceacquisition o ers promising results with a view to
their integration with other feature types.

Automatic acquisition of examples: In chapter VI, we applied a
method to automatically acquire tagged examplesfrom the web. This
method, basedon (Leacak et al., 1998), obtained good performance
on three systemswith di erent supervision requiremerts: fully super-
vised (automatic examplesaddedto hand-taggedcorpora), minimally
supervised (requiring information about sensedistributions), and un-
supervised(without hand-taggedexamples).We shoved that the fully
supervised system, combining our web corpus with the examplesin
Semcor,improvesover the samesystemtrained on Semcoralone (spe-
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cially for nouns with few examplesin Semcor). Regarding the mini-
mally supervisedand fully unsupervisedsystemswe demonstratedthat
they perform well better than the other systemsof the samecategory
presened in the Senseal-2 lexical-samplecompetition. Our system
can be trained for all nounsin WordNet, using the data collectedfrom
the web.

Genre/topic  shift: In chapter VII, we studied the strength of the
\one senseper collocation" hypothesis (Yarowsky, 1993) using di er-
ernt corpora for training and testing. Our experimerts showv that the
hypothesisis wealker for ne-grained word sensedistinctions, and that
it does hold acrosscorpora, but that collocations vary from one cor-
pus to other, following genreand topic variations. This would explain
the low performancefor WSD acrosscorpora. In fact, we shaved that
when two independent corpora sharea related genre/topic, the WSD
resultsare better. Thus, this factor should be taken into accourt when
extending the training data.

Other interesting results that cameout from our work are the following
to ols:

High-precision WSD tool for English (chapter 1V) : We tested
on Senseal-2 data di erent systemsthat could provide high precision
at the cost of coverage. The results were promising, as two meth-
ods basedon DLs readed 93% precision at 7% coverage (decision-
threshold method), and 86% precision at 26% coverage (feature se-
lection method). Syrtactic features are specially helpful for feature
selection.

Supervised WSD tool for English (chapter V): We dewloped a
supervised systembasedon the combination of di erent ML methods
and smoothing techniques. In the Senseal-3 English lexical-sample
task, it ranked 5th among 47 submissions,only 0.6% lower than the
best system. This system also participated in the all-words task, as
a componert of the \Meaning" system, which ranked 5th among 26
systems.

Supervised WSD tool for Basque (chapter V) : We have adapted
our modelsto Basque,which is an agglutinative languageand presens
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new challengeswhen de ning the feature set. We have tested this tool
on the Senseal-3 Basquelexical-sampletask data, and it outperforms
the results of other systemsthat took part in the evert.

Unsup ervised WSD tool for English (chapter VI) : We built

an unsupervised systemrelying on automatically obtained examples,
which shows promising resultsfor alleviating the knowledgeacquisition
bottlened. It hasbeentested on the Senseal-2 English lexical-sample
task, preseiing the best performanceof this kind of systems.

There are alsosomelexical resources (available for researd) that have
beendeweloped as a result of our work:

Selectional preferences (chapter V) : Using the syntactic depen-
dencies(object and subject) extracted from Semcor,we constructed
and evaluated selectionalpreferencegor verb and noun classesn Word-
Net. This database,consistingon weighted relations betweensynsets,
is available by meansof a Meaning license,or by personalrequest.

Sensetagged corpus (chapter VI) : We constructedautomatically a
sense-taggedorpusfor all nounsin WordNet. This resources publicly
available, and can be downloadedfrom

http://ixa2.si.ehu.es/pub /sen secorpus.

Finally, during this researt, we have published our results in di erent
articles. The completelist is given in appendix A.

VIIl.2 Detailedconclusions

In orderto achieve the resultsdescribedin the previoussection,we followed a
path through di erent WSD issueswhich sened to organizethe chapters of
this dissertation. The conclusionsderived from our analysiswere presened
at the end of ead chapter. We will now dewte this sectionto summarize
the main results.

BaselindNVSD systemunderdi erent conditions(3rd chapter)

These are our conclusionsfrom our study on DL, \classic" features, and
currerntly available hand-taggeddata on di erent conditions:
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Performance: Semcorprovides enoughdata to perform somebasic
generaldisambiguation, at 68% precisionon any generalrunning text.

The performanceondi erent wordsis similar, asambiguity and number
of examplesare balancedin this corpus. The main di erences are
given by the PoS of the target words: the verbs presen the highest
poliseny and lowest precision. DSO provideslarge amourts of data for
speci ¢ words, allowing for improved precision. Howeer, it is unable
to overcomethe 70% barrier for our target word set. Finally, when
applied to the Senseal-2 dataset, the systemgets lower performance,
with a recall of around 57%for the lexical-sampleand all-words tasks.
The main reasonsfor the low results are the high ambiguity of the
target word-set (for the lexical-sampletask), and the unavailability of
training data (for the all-words task).

Relation between polisemy/bias/frequency and performance:
The highestresults can be expectedfor words with a dominating word
senseput the di erence to the MFS baselineis lower. Wordswith high
poliseny tend to be the most frequen, which makesthe poliseny and
frequencyfactors balanceead other.

Local features vs. topical features: In Semcor,topical features
were better for nouns, but not for other categories. For DSO, the
local featuresacdieved better performancethan the topical set for all
categories.This could be due to the much higher number of examples
in DSO. It is important to note that single words exhibit di erent
behavior, suggestingthat the best policy could be the construction of
word-experts with speci ¢ feature sets(Hoste et al., 2002).

Learning curv e: The learning curve in Semcorshavs that more data
would help to improve the WSD system. In DSO, the system keeps
learning with more data, but it stabilizeswith 80% of all the available
data, which indicatesthat a plateau has beenreaded for this system
with 930 examplesper noun and 1,370examplesper verb.

Noise in the data: Our conclusionwasthat whenwe have few exam-
plesto train, asin Semcor,the noisea ects the performanceheavily,
and it is necessaryto usebiggeramourts of data in order to minimize
the damage.
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Coarse-grained disam biguation: The precisionwe obtain with se-
martic les is 83%, both in DSO and Semcor;but with slightly lower
coveragein Semcor.The improvemert is specially noticeablefor verbs,
wherethe reduction of sensegranularity allows to reac 91%recall in
DSO. An openissueisto nd applicationswherecoarsedisambiguation
would help.

Performance for Basque: Our aim wasto imitate the expressieness
of the well-studiedfeaturesfor English WSD, and we introducedse\eral

di erent feature typeswith that goal. Howewer, a better study of the

contribution of singlefeaturesshould be done. All in all, the resultsin

the Senseal-2 task are encouragingwith our systemonly 2% below the

winner JHU system(while the di erence was 8% betweenthesesystems
for English), which would indicate that our feature set represeted

better the cortext than the JHU set, although their ML method was
clearly better.

Richerfeaturesets(4th chapter):

The types of featureswe have analyzedin this chapter are divided in three
groups: syntactic features, semaiic features, and selectional preferences.
Thesewere the main conclusionsof our experimerts:

Syntactic features on Semcor and DSO: the performancein this
setting waslow, specially in Semcor(both precisionand coverage). For
DSO, the precisionwasslightly better than the basicset, but the cover-
agewas low. The synactic featuresdid not cortribute signi cantly in
combination. Another study was conductedseparatelyfor the di erent
feature types, and we obsened that somesynactic featuresacdieved
comparatively good recall for verbs, specially ngrams, suggestingthat
some subcategorization information had been acquired. For further
analysis, we focusedon somewords in the Semcorexperimert, and
analyzedthe learned decisionlists. Theseare the main problems ob-
sened:

{ Low coveragebecauseof the sparsedata.

{ Redundancywith basictypes.
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{ Presenceof noisy features.

{ Parsing errors.

Syntactic features on the Senseval-2 corpus

The results were signi cantly better in this corpus for synactic fea-
tures. Synactic featuresaloneobtained better F1 value than the MFS
baseline. The F1 value was much higher in this experimert than in
the DSO task, even when the recall of the MFS baselinewas higher
in DSO. In our next experimert, we tested the combination of basic
and syntactic featuresusing the two ML methods. We extracted these
conclusions:

{ AB outperformsDL in all casesgexceptfor local features.
{ Syntactic featuresget worseresults than local features.

{ Syntactic featuresprove to be useful in the combination. DLs
prot from the additional syntactic featuresbut the di erence
is only statistically signi cant for verbs. AB is able to attain
signi cant improvemen (1.8% overall, 2.7%for verbs).

Syntactic features and high precision systems

We analyzedtwo systemsbasedon DL (Feature selectionand Decision-
threshold), and one basedon AB (Decision-threshold). Theseare the
main obsenations:

{ Syntactic featuresalways help to improve the F1 of the basicset.

{ Adjusting the methodsto a minimum lossof coverage(discarding
the most di cult testing examples),the overall F1 improves for
the three methods.

{ The methods basedon DL read 93% precisionat 7% coverage
(decision-threshold),and 86% precisionat 26% coverage(feature
selection). Syntactic featuresare specially helpful for feature se-
lection.
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{ AB does not adiieve high precision gures, but it obtains the
highest F1 scorein this setting, with 66.7%precisionand 84.5%
coverage.

Semantic features:

This feature set was de ned using the WordNet hierarcy, and the
information from the semaric les. The experimerts were performed
on Semcorwhich meansthat there werefew examplesto train, but also
that the systemwould be applicableto an all-words task. The results
show that overall, the systemis ableto improve the performanceof the
topical feature set, usingthe NB algorithm. This could be usefulwhen
the local cortexts are not reliable, as could happen with automatically
acquired features (cf. chapter VI). Another casewhere the recall is
improved is for adjectives,with a gain of 3% recall.

All in all, the experimerts suggestthat other ways should be tried to
benet from thesefeatures. Instead of the \bag-of-synsets"approad,
the usageof dependencyrelations seemsa better way to explore se-
martic generalization.

Selectional preferences:

We tested the performanceof two modelsin object/subject relations:
word-to-class, and class-to-class. The goal was to disanbiguate the
nounsin the relations. The two main experimerts, which were per-
formed for a sample of nouns, and for all the nouns in four Semcor
les, took usto the following conclusions:

{ The class-to-classnodel obtains better recall than the word-to-
classmodel, with only a small lossin precision. Class-to-class
learnsselectionalpreferencegor sense®f verbsthat do not occur
in the corpus,via inheritance.

{ The recall of the class-to-classnodel getscloseto the MFS base-
line. We have to note that this is a hard baselinefor this kind of
all-words systems,as we have seenin our study of the literature
(cf. sectionlV.2.2).

{ The preferencesre acquiredfrom a small set of taggedexamples,
and for somewordsthe resultsarevery low. The wordswith more
examplesto train shav better performance.
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The main limitation of the selectionalpreferenceapproad wasthe low
coverage,and alsothat no cut-o valuesor smaothing is applied, and
the algorithm is forced to make decisionswith few data. Applying a
threshold could help to improve precisionat the costof coverage. There
are other experimerts we would like to exploreat this point: the useof
a big untagged corpusto learn the preferencesthe disanbiguation of
words with other PoS than nouns, and the inclusion of other features
than object and subject.

Spasedata problemand smaothing (5th chapter):

In this chapter we studied di erent smoothing techniquesand ML methods.
We built an ensenble of ML methods that was evaluated on Senseal-2 and
Senseal-3, and applied to Basqueand English.

Evaluation on Senseval-2: The ewaluation on Senseal-2 data indi-
cated that the smoothing method exploredin this chapter is able to
make all three methods perform at very high precisions,comparable
and in somecasessuperior to the bestresult attained in the Senseal-2
competition. We also showved that a simple conbination of the meth-
ods and a fourth system basedon SVM attains the best result for
the Senseal-2 competition reported so far (although only in its more
successfulcon guration, as the systemwas not \frozen" using cross-
validation).

Evaluation on Senseval-3: We patrticipated with our systemin the
English and Basquelexical-sampletasksin Senseal-3. We submitted
two systemsfor ead task after tuning on cross-alidation: the best
ensenble, and the best single method. Our systemsobtained good
results, very closeto the winning systemsin both tasks. For English,
our disambiguation method shows a similar behavior on the Senseal-2
and the Senseal-3 datasets(both in cross-alidation and againstthe
testing part). The ensenble performs best in all cases,followed by
VSM. The smoothing methods cortribute to increasethe recall in both
cases.The results for Basqueare di erent, in this casethe best single
systemis SVM, and the combination of methods doesnot improve the
results. For Basque,the prot from the smoothing methods is much
lower, and some algorithms (like VSM) seemto perform below the
expectations.
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Smoothing techniques: For further study, it would be interesting to
extend this work to X/Y featuresfor Y greaterthan 1, and try other
grouping criteria, e.g. taking into accour the classof the word. We
would alsolike to compareour resultsto other more generalsmaothing
technigues(Good, 1953;Jelinek and Mercer, 1980;Chen, 1996).

Automatic acquisitionof exampledo alleviatethe knowledgeac-
quisitionbottleneck(6th chapter):

We have applied the \monosemousrelatives" method to construct automat-

ically a web corpuswhich we have usedto train three systemsbasedon DL.:

one fully supervised (applying examplesfrom Semcorand the web corpus),
one minimally supervised (relying on the distribution of sensesn Semcor
and the web corpus) and another fully unsupervised(using an automatically

acquired senserank and the web corpus). The systemswere tested on the
Sensesal-2 lexical sampletest set.

Performance: We have showvn that the fully supervisedsystemcom-
bining our web corpuswith the examplesin Semcorimprovesover the
samesystemtrained on Semcoralone. This improvemer is specially
noticeablein the nounsthat have lessthan 10 examplesin Semcor.Re-
garding the minimally supervisedand fully unsupervised systems,we
have shavn that they perform well better than the other systemsof the
samecategory presened in the Senseal-2 lexical-samplecompetition.
The system can be trained for all nounsin WordNet, using the data
collectedfrom the web'.

Imp ortance of bias: Knowing how many examplesareto be fedinto
the ML systemis a key issue. We have explored se\eral possibilities,
and we have seenthat assigningdirectly the rst sensein a ranking
obtained from hand-taggeddata (or evenwith automatic meanson raw
corpora) can be a good approximation for disanmbiguation. Howeer,
the DL algorithm is always able to improve this heuristic training on
the automatically acquiredexamples.

Limitations of the system: One of the limitations of our system
is that it reliesonly on DL as learning method. In order to improve

1This corpusis available at http://ixa2.si.e hu. es/p ub/ sensecorpus
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performance, more powerful ML methods could be applied, like the
ensenble constructed on chapter V. We would also like to tune the
algorithm that choosesthe monosemouselatives, giving preference,
for instance,to multiw ords that cortain the target word asin (Leacack
et al., 1998). The method could aswell bene t from sophisticatedtools
to acquireexampleghat are now available, like ExRetriever (Fernandez
et al., 2004),which could openthe way to exampleswith lessnoiseand
better performance.

Genre/topicof examplesnd portability (7th chapter):

In this sectionwe studied the one senseper collocation hypothesisfor ne-
grained sensedistributions, and acrossgenreand topic variations. Here we
summarizeour main conclusions:

Fine-grained disambiguation: This chapter showns that the one
senseper collocation hypothesisis wealer for ne-grained word sense
distinctions (e.g. those in WordNet): from the 99% precision men-
tioned for 2-way ambiguities in (Yarowsky, 1993)we drop to 70% g-
ures. These gures could perhapsbe improved using more available
data.

Cross-corp ora disambiguation: We also shav that one senseper
collocation does hold acrosscorpora, but that collocations vary from
onecorpusto other, following genreand topic variations. This explains
the low resultswhen performing word sensealisambiguation acrosscor-
pora. In fact, we demonstratedthat when two independen corpora
sharea related genre/topic, the WSD results are better. This hascon-
siderableimpact in future work on WSD, asgenreand topic are shavn
to be crucial parameters. A systemtrained on a speci ¢ genre/topic
would have di culties to adapt to new genre/topics. Besides,methods
that try to extend automatically the amourt of examplesfor training
needalsoto accourt for genreand topic variations.

Cross-validation performance and hand-tagging errors: As a
side e ect, we have shown that the results on cross-alidation WSD
exerciseswhich mix training and test data drawn from the samedoc-
umerts, are higher than those from a more realistic setting. We also
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discovered seeral hand-tagging errors, which distorted extracted col-
locations. We did not ewaluate the extert of these errors, but they
certainly a ected the performanceon cross-corfra tagging.

VIIl.3 Furtherwork

There are open researb linesin this work that can be exploredfurther. We
will descrike herethe main experimerts that we would like to performin the
future.

Integration of selectional preferences in the supervised set-
ting: Wethink that despitetheir low coverage,selectionalpreferences
would help to improve the overall performanceof a supervisedsystem,
although it is not straightforward how to integrate them with other
feature types. One possibility would be to include the sensechosenby
the selectionalpreferencemodel in the feature set, in a fashion similar
to (Stevensonand Wilks, 1999). The generalizationof syrtactic depen-
denciesusing WordNet o ers promising results, as has beenshown in
(Mihalcea and Faruque, 2004Y.

Smoothing for automatic acquisition of examples: An interest-
ing application of the smoothing techniquesis to detect good features,
ewven in the caseof low amourts of training data. Thesefeaturescould
be used as seedsto obtain new examplesautomatically, in a fashion
similar to the method applied in chapter VI for monosemouselatives.
They could alsobe integrated in a bootstrapping processusingDLs, as
in (Yarowsky, 1995b). The DL algorithm is well suited for this task,
as it relies on a single piece of evidence(feature) to choosethe cor-
rect senseand it has beenshownn to perform signi cantly better with
smoothing.

Automatic acquisition of examples for impro ved all-w ords WSD:
As we mertioned in chapter VI, an automatically obtained corpuswas
compiledfor all nounsin WordNet. Wewould liketo apply this resource
to betestedin an all-words task. We would focuson the improvemen
for words with low amourts of hand-taggeddata available.

2The system\SenseLearner" has beendescribed in section|1.8.
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Adaptation to the domain: As we have seenin chapter VII, the
performancedrops whenwe train the WSD systemon onedomain and
apply it to another. In order to work on di erent typesof corpora, one
promising way would be to apply the automatic ranking by McCarthy
et al. (2004)to determinethe bias of the sensesand usethis informa-
tion to determine the number of training examplesfor ead senseto
learn. For that, we would require a big databaseof examples,which
could be obtained by the method presened in chapter VI. Finally, in
order to extend our work on domain, one of the factors that should be
analyzedis the separatein uence of the genreand topic variations.

Impro vements of the Basque system: Our main conclusionfor
Basqueis that the chosenfeature set should be revised, as it is not
clear how to represen the context in caseof agglutinative languages.
Usinga\cleaner" feature setwould alsohelp the smaothing techniques.
Another interesting experimert would be to rely on the relationsin the
BasqueWordNet to obtain an all-words sense-taggedorpusautomat-
ically.

Application of high-precision WSD to other tasks: Regarding
the high-precisionsystemstested on this dissertation, we would like to
extend our approadies(basedon DLs) to other ML methods. We think
that the integration of di erent high-precisionsystemscould improve
the coveragewithout lossin precision. More importantly, we would
like to apply this kind of systemsto tasks that could benet from a
partially taggedcorpora, like lexical acquisition.
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B. APPENDIX

Additional tables

B.1 Word Sets

Nouns Verbs Adjectiv es Indeterminates
-n N -V N -a N -p N
accident 267 amaze 70 brillian t 229 band 302
behaviour | 279 bet 177 deaf 122 bitter 373
bet 274 bother 209 oating 47 hurdle 323
disabilit y 160 bury 201 generous | 227 sanction | 431
excess 186 calculate | 217 giant 97 shake 356
oat 75 consume | 186 modest 270
giant 118 derive 216 slight 218
knee 251 oat 229 wooden 195
onion 214 invade 207
promise 113 promise 224
rabbit 221 sak 178
sadk 82 scrap 186
scrap 156 seize 259
shirt 184
steering 176
TOT AL 2756 | TOT AL 2501 | TOT AL 1406 | TOT AL 1785

Table B.1: The 41 words selectedfor the English task in Senseal-1, their
distribution accordingto PoS, and the numbers of test instancesassaiated
with ead (N). Source: http://www.senseval.og.
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Word PoS | Senses| Examples Word PoS | Senses| Examples
blind A 7 55 nature N 7 46
colourless | A 2 35 post N 13 79
cool A 6 52 restraint N 8 45
faithful A 3 23 sense N 9 53
ne A 11 70 spade N 6 33
t A 3 29 stress N 6 39
free A 17 82 yew N 3 28
graceful A 2 29 begin \% 8 280
green A 17 94 call \Y, 23 66
local A 2 38 carry \% 27 66
natural A 23 103 collaborate | V 2 30
oblique A 3 29 develop \% 15 69
simple A 6 66 draw \Y, 32 41
solemn A 2 25 dress \Y 14 59
vital A 7 38 drift \Y 9 32
art N 17 98 drive \Y 15 42
authority | N 9 92 face \% 7 93
bar N 20 151 ferret \ 1 1
bum N 4 45 nd \Y 17 68
chair N 7 69 keep \Y, 27 67
channel N 8 73 leave \Y 14 66
child N 7 64 live \Y 10 67
church N 6 64 match \ 8 42
circuit N 14 85 play \% 25 66
day N 16 145 pull \Y, 33 60
detention N 4 32 replace Vv 4 45
dyke N 2 28 see \Y, 21 69
facilit y N 5 58 serve \% 12 51
fatigue N 6 43 strik e \Y 26 54
feeling N 5 51 train \% 9 63
grip N 6 51 treat \% 6 44
hearth N 3 32 turn \ 43 67
holiday N 6 31 use \% 7 76
lady N 8 53 wander \Y, 4 50
material N 16 69 wash \Y 13 12
mouth N 10 60 work \ 21 60
nation N 4 37

Table B.2: The 73 words selectedfor the English lexical-sampletask in
Senseal-2. For eah word and PoS, the number of sensesand the num-
ber of testing examplesis given (there is approximately twice as much for
training ead word). Data available at http://www.senseval.og.
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Word PoS | Senses| Examples Word PoS | Senses| Examples
apal A 4 44 koroa N 4 31
arin A 8 47 lantegi N 4 42
astun A 6 56 masa N 3 36
automatik o | A 2 39 tentsio N 2 51
borrokalari A 2 37 ur N 3 47
gordin A 5 43 altxatu \Y 7 44
hotz A 6 36 azaldu \% 2 36
natural A 3 35 baliatu \Y, 3 36
xehe A 6 35 ebaki \% 4 37
zahar A 5 36 edan \% 4 35
bide N 13 50 ekarri \Y, 6 52
egun N 8 53 erre \% 3 47
eliza N 7 36 etorri \Y, 6 47
enplegu N 3 43 galdu \% 7 57
gai N 3 55 garbitu | V 5 36
herri N 14 51 gidatu \% 3 53
ibilbide N 4 49 ikusi \Y 7 51
kanal N 3 37 iraun \Y, 4 47
kantu N 5 47 jaio \% 2 38
kapitain N 3 42 jantzi \Y, 3 48

Table B.3: The 40 words selectedfor the Basque lexical-sampletask in
Sensesl-2. For eat word and PoS, the number of sensesand the num-
ber of testing examplesis given (there is approximately twice as much for

training). Data available at http://www.senseval.og.



212

Additional tables

Word PoS | Examples Word PoS | Examples
dierent A 50 begin \ 79
hot A 43 climb \Y 67
imp ortant A 19 decide \Y, 62
simple A 18 eat \% 87
solid A 29 encounter | V 65
argument N 111 expect \% 78
arm N 133 express \% 55
atmosphere N 81 hear \% 32
audience N 100 lose \ 36
bank N 132 mean \Y 40
degree N 128 miss \% 30
di erence N 114 note \ 67
dicult y N 23 operate \% 18
disc N 100 play \Y, 52
image N 74 produce \% 94
interest N 93 provide \Y, 69
judgment N 32 receive \% 27
organization | N 56 remain \Y, 70
paper N 117 rule \Y, 30
party N 116 smell \% 55
performance | N 87 suspend \% 64
plan N 84 talk \ 73
shelter N 98 treat \ 57
sort N 96 use \% 14
source N 32 wash \ 34
activate \% 114 watch \Y 51
add \% 132 win \% 39
appear \% 133 write \Y 23
ask \% 131

Table B.4: The 57 words selectedfor the English lexical-sampletask in
Senseal-3. For eath word and PoS, the number of testing examplesis
given (there is approximately twice as much for training). Data available

at http://www.senseval.og.
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Word PoS | Examples || Word PoS | Examples
apal A 60 koroa N 66
arin A 93 lantegi N 55
astun A 70 masa N 45
automatik o | A 45 tentsio N 63
borrokalari A 14 ur N 47
gordin A 82 azaldu \Y, 45
hotz A 48 baliatu \% 37
natural A 69 berdindu \Y, 107
xehe A 37 edan \% 41
zahar A 73 entrenatu \Y, 66
bide N 62 etorri \% 49
egun N 64 galdu \Y, 85
eliza N 42 gidatu \% 60
enplegu N 43 igo \% 75
gai N 66 ikusi \% 92
herri N 83 irabazi \% 56
ibilbide N 50 iraun \Y, 56
kanal N 68 jaio \% 47
kantu N 45 jaitsi \Y, 68
kapitain N 55 jokatu \% 71

Table B.5: The 40 words selectedfor the Basque lexical-sampletask in
Senseal-3. For eadh word and PoS, the number of testing examplesis
given (there is approximately twice as much for training). Data available
at http://www.senseval.og.

PoS are separatedby horizortal lines.

set A set B set C
Word PoS | Sense# Word PoS | Sense# Word PoS | Sense#
All A 2 Age N 5 Age N 5
Long A 10 Church N 3 Art N 4
Most B 3 Head N 30 Body N 9
Only B 7 Interest N 7 Car N 5
Account N 10 Member | N 5 Child N 6
Age N 5 Fall V 32 Cost N 3
Church N 3 Give \% 45 Head N 28
Duty N 3 Know \% 11 Interest | N 8
Head N 30 Line N 28
Interest N 7 Point N 20
Member N 5 State N 6
People N 4 Thing N 11
Die \Y 11 Work N 6
Fall \% 32 Become | V 4
Give \% 45 Fall \% 17
Include \% 4 Grow \% 8
Know \% 11 Lose \ 10
Seek \% 5 Set \% 20
Understand | V 5 Speak \% 5
Strik e \% 17
Tell \% 8
Table B.6: Setsof words A, B, and C (cf. sectionll1.3.1.1). The di erent
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Additional

tables

B.2 Semanticles

Nouns Verbs
Tops body
act change
animal cognition
artifact communication
attribute competition
body consumption
cognition cortact
communication creation
event emotion
feeling motion
food perception
group possession
location sccial
motive stative
object weather
person
phenomenon
plant
possession
process
quantity
relation
shape
state
substance
time

Table B.7: List of Sematic Files in WordNet (version 1.7) for nouns and

verbs.
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B.3 Completdist of relationdrom Minipa
Table B.8: Complete list of relations from Minipar. For eac relation we
indicate his type, give a short description, and some examples and comments.
We distinguish four kinds of relations: \Rel" (main relation, the relations
that seemmore useful for disambiguation), \Aux" (auxiliar relations: auxiliar
verbs, clauses, etc.), \Fun" (relations that seemirrelevant, but could help on
disambiguation), \No" (relations that seemuselessfor disambiguation).
Relation Rel Aux Fun | No Description Examples Commen ts
abbrev X Abbreviation NMR ! Nuclear
age X Age John, 7, ...
amod X Adv erbial Well thought
modif.
Merely provide
appo X App osition John, director gen-
eral, ...
appo-mod X App osition Often
modif. wrong
as-arg X
asl X
as2 X
aux X Aux. Verb John should be
promoted
John -s! resign
aux- should
be- be
be X "be" asaux. | is be- sleeping
Verb
being X "being" as
aux verb
by-subj X Subj.  with
passives
c X Clausal com- that  c- John
plement loves Mary
I go there for +
in nitiv e clause go
mod- (inf) c-
for i- mainverb
cn x? Nominalized to issueis great Often
clause be sinf cninf | wrong
i issue
compl X Complement . one of the boys | "boy in the
(PP, inf/n one (N_P) | garage" is
clause) of compl- of | MOD
noun pcomp-n- boy ..
grants to nance
hospitals
grants (N_C)
cl- (inf) - -
nance
Contin ued on next page
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Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.

We distinguish four kinds of relations: \Rel" (main relation, the relations
that seemmore useful for disambiguation), \Aux" (auxiliar relations: auxiliar
verbs, clauses, etc.), \Fun" (relations that seemirrelevant, but could help on
disambiguation), \No" (relations that seemuselessfor disambiguation).
Relation Rel | Aux Fun | No | Description Examples Commen ts
. resolution
which voted ...
resolution  (N_C)
cl- (n) i-
voted
comp2 X ???7?7? Few occur-
rences
conj X Conjunction Indirectly ,
to nd obj
desc X Description ... make a man a | Occurs fre-
child quently
make desc- child
.... becomeeclectic
dest X Destination Often
wrong
det X Determinan t
expletiv e X It, .. it was disclosed
it -exp! disclose
it means, it seems
fc X Finite com- | ... said there is ...
plement(?) say fc- (n) i-
mainverb
gen X Genitiv e court's -gen!
ward
guest X Adjun ts(?) make house g- at
church
have X "have" as
aux. Verb
head X Dep. be- | should | go....
tween query | Q inv-aux-
and main | should head-go
verb
i X See ¢ and
fc, dep. be-
tween clause
and main
verb
inside X
inv-aux X Seehead
inv-be X
inv-have X
lex-dep ? ? ?? rep., mayor, Mr. ... | It has errors
Contin ued on next page
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Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.

We distinguish four kinds of relations: \Rel" (main relation, the relations
that seemmore useful for disambiguation), \Aux" (auxiliar relations: auxiliar
verbs, clauses, etc.), \Fun" (relations that seemirrelevant, but could help on
disambiguation), \No" (relations that seem uselessfor disambiguation).
Relation Rel | Aux Fun | No | Description Examples Commen ts
lex-mod ? ? ?? Multi- oil- led makesa sin-
word terms ? | led lex-mod- oil | gle lexical
entry:  oil-
led, "edge
up"”, "grand
jury”
to edge up
edge up
grand jury
jury lex-mod
grand
child welfare ser-
vice
"The Constitu-
tion"
now and then
location X
mod X Modi er Strik es increase as
workers demand...
increase  mod as
compl n ide-
mand
raises to cope with
situation
raise mod inf i
cope mod with
pcomp-n  situa-
tion
lost mod- al-
ready
satisfactory -
mod! condition
neg X
nn X noun-noun eld servicessector
modier, see | secotr nn eld
also lex-mod nn service
obj X Object
obj2 X Indirect ob- Sometimes
ject wrong
p-spec X pp speci er back -p-spec to
pcomp-c X Clause of pp | in voting itself
in  pcomp-c vpsc
i- votig
pcomp-n X Nominal in the house
head of pp in pcomp-n
house
pnmod X Postnominal person pnmod
mod. missing
Contin ued on next page




218 Additional tables

Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.
We distinguish four kinds of relations: \Rel" (main relation, the relations
that seemmore useful for disambiguation), \Aux" (auxiliar relations: auxiliar
verbs, clauses, etc.), \Fun" (relations that seemirrelevant, but could help on
disambiguation), \No" (relations that seemuselessfor disambiguation).

Relation Rel | Aux Fun | No | Description Examples Commen ts
poss X Only for 's use gen
post X The thing af- | few ideas, the rst

ter det man
pre X The thig be- | all the men, such
fore det men
pred X Predicativ e John is beatuful
(can be A or | (n) i- is pred
N) beautiful subj
John
rel X Relativ e earnings which
clause grow
earning rel n
whn  which i
grow
S X Surface sub-
ject, better
to use subj
sc X Sertential force John to do
complement force sc-do
self X Himself...

spellout X
subj X
vrel X Passive verb | fund vrel- | When "pn-

modier of | granted mod", is
nouns tagged as
adj. (often
wrongly),
here is
tagged as
verb
wha X
whn X
whp X
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B.4 Perfamanceof singlefeaturesisingSemco

In the following 4 tables, the results obtained using singlefeaturesare shown.
The rst two tablesiillustrate the results for nouns sorted by precisionand
recall, respectively. The last two tablesare dewoted to nouns. Many syrtactic
featuresdo not appear in the training corpus, and are not included in the
tables. Somesemairic featuresthat have beentestedin other works have not
beenremoved from the tables and appear as \basic" features (win_syn 4w,

win_anc.0s, win_anc30s, win_hyper_0s, win_level4.0s...).

Table B.9: Results in Semcor for the whole set of features disambiguating

nouns (sorted by precision).

Feature Typ e | Precision Coverage | Recall

Mod_Prep_pcomp-n_N _word indirect 100 3.3 3.3
Mod_Prep_pcomp-n_N_synset indirect 100 3.1 3.1
Mod_lem IGR-direct 100 1 1
Mo d_synset IGR-direct 100 1 1
Mod_word IGR-direct 100 1 1
postl_lem IGR-direct 100 0.7 0.7
postl _word IGR-direct 100 0.7 0.7
Has_relat_mod_C_i_VI indirect 100 0.7 0.7
sl_lem IGR-direct 100 0.6 0.6
sl_synset IGR-direct 100 0.6 0.6
sl_word IGR-direct 100 0.6 0.6
subjl _lem IGR-direct 100 0.6 0.6
subjl _synset IGR-direct 100 0.6 0.6
subjl _word IGR-direct 100 0.6 0.6
has_relat _mod_perl GR-bigr-direct 100 0.6 0.6
postl _synset IGR-direct 100 0.5 0.5
has_relat _guestl GR-bigr-direct 100 0.5 0.5
has_relat _mod_froml GR-bigr-direct 100 0.5 0.5
genl_synset IGR-direct 100 0.4 0.4
objl _lem IGR-direct 100 0.4 0.4
objl _word IGR-direct 100 0.4 0.4
has_relat _vrell GR-bigr-direct 100 0.4 0.4
has_relat _mod_forl GR-bigr-direct 100 0.3 0.3
conjl _lem IGR-direct 100 0.2 0.2
conjl _synset IGR-direct 100 0.2 0.2
guestl_lem IGR-direct 100 0.2 0.2
guestl _word IGR-direct 100 0.2 0.2
nn_lem IGR-direct 100 0.2 0.2
nn_synset IGR-direct 100 0.2 0.2
nn_word IGR-direct 100 0.2 0.2
possl_lem IGR-direct 100 0.2 0.2
possl-word IGR-direct 100 0.2 0.2
vrell lem IGR-direct 100 0.2 0.2
vrell _synset IGR-direct 100 0.2 0.2
vrell _word IGR-direct 100 0.2 0.2

Contin ued on next page
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Table B.9: Results in Semcor for the whole set of features disambiguating
nouns (sorted by precision).
Feature Type | Precision Coverage | Recall
has_relat _appo GR-bigr-direct 100 0.2 0.2
has_relat _gen GR-bigr-direct 100 0.2 0.2
has_relat _mod_asl GR-bigr-direct 100 0.2 0.2
has_relat _-mod_outl GR-bigr-direct 100 0.2 0.2
has_relat _possl GR-bigr-direct 100 0.2 0.2
compl_C.i_V_lem indirect 100 0.2 0.2
compl_C._i_V _synset indirect 100 0.2 0.2
compl_C.i_V _word indirect 100 0.2 0.2
compl_Prep_pcomp-n_NI_lem indirect 100 0.2 0.2
compl_Prep_pcomp-n_NI _synset indirect 100 0.2 0.2
compl_Prep_pcomp-n_NI _word indirect 100 0.2 0.2
has_relat -s.CN_cn_C_i_VI indirect 100 0.2 0.2
mod_Prep_pcomp-n_NI _synset indirect 96.3 2.8 2.7
obj_word IGR-direct 95.9 5.1 49
mod_Prep_pcomp-n_N_lem indirect 94.7 4 3.8
modI _synset IGR-direct 94.1 7.1 6.7
obj_lem IGR-direct 93.3 6.1 5.7
modI _lem IGR-direct 92.6 8.5 7.9
mod| _word IGR-direct 92.6 8.5 7.9
mod_Prep_pcomp-n_NI _word indirect 91.4 2.4 2.2
mod_Prep_pcomp-n_NI _lem indirect 90 3.1 2.8
obj_synset IGR-direct 88.7 5.5 49
trig _wf_+1 basic 88.1 23.7 20.9
trig _lem_+1 basic 87.8 24.8 21.8
nnl _synset IGR-direct 86.8 3.1 2.7
nnl _lem IGR-direct 85.7 4.4 3.8
detl _synset IGR-direct 85.6 1.4 1.2
nnl _word IGR-direct 85.4 4.3 3.7
big_wf_+1 basic 84.9 62.3 52.9
win _syn_4w basic 84.8 41.3 35
big_lem_+1 basic 84.6 65.2 55.2
genl_lem IGR-direct 84 12 10.1
genl_word IGR-direct 83.6 11.8 9.9
win -wf_3w basic 83.3 59.4 49.5
compl_Prep_pcomp-n_N_lem indirect 83.3 0.6 0.5
compl_Prep_pcomp-n_N_word indirect 83.3 0.6 0.5
trig _wf_0 basic 83.1 25.3 21
trig _lem_0 basic 82.4 25.6 211
win _wf_4w basic 82.1 71.2 58.5
has_relat _postl GR-bigr-direct 815 1.2 1
has_relat _mod_ofl GR-bigr-direct 80 10.9 8.7
win _syn_50w basic 79.9 99.9 79.8
win _syn_1s basic 79.9 98.5 78.7
win _syn_20w basic 79.8 97.4 77.7
trig -wf_-1 basic 79.1 16.7 13.2
has_relat _obj GR-bigr-direct 78.9 21.3 16.8
win _lem_50w basic 78.8 100 78.8
trig _lem_-1 basic 78.7 17.3 13.6
has_relat _mod_inl GR-bigr-direct 78.7 2.7 21
has_relat _comp1_Prep_pcomp-n_N indirect 78.4 15 1.2
Contin ued on next page
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Table B.9: Results in Semcor for the whole set of features disambiguating

nouns (sorted by precision).

Feature Type | Precision Coverage | Recall

win _lem_0s basic 78.3 100 78.3
win _syn_0s basic 78.2 84 65.7
win _lem_1s basic 78.1 100 78.1
win _lem_20w basic 77.8 100 77.8
win _lem_4w basic 77.4 99.8 77.2
win _anc_0s basic 77.1 97.2 74.9
has_relat _genl GR-bigr-direct 77.1 15.7 12.1
has_relat _.comp1_ofl GR-bigr-direct 76.9 14 11
win _anc3_0s basic 76.8 97.1 74.6
Pred_synset IGR-direct 76.7 1.8 14
Win _wf_0s basic 76.6 97.4 74.6
Win _hyper_0s basic 76.5 93.1 71.2
Win _level4_Os basic 75.9 91 69.1
has_relat _subj GR-bigr-direct 75.4 16.2 12.2
pcomp-n_lem IGR-direct 75.1 30 22.5
pcomp-n_word IGR-direct 75.1 30 22.5
subj_lem IGR-direct 75 5 3.8
has_relat _pred GR-bigr-direct 75 2.9 2.2
has_relat _compl1_Prep_pcomp-n_NI indirect 75 1.3 1
win _sf_20w basic 74.5 100 74.5
win _sf_4w basic 74.2 99.9 74.1
subj_word IGR-direct 74.2 3.7 2.7
has_relat _objl GR-bigr-direct 74.2 2.8 2.1
s.word IGR-direct 74.1 3.7 2.7
big_lem_-1 basic 74 70.4 52.1
big_wf_-1 basic 74 63.3 46.8
subj_synset IGR-direct 73.8 4.6 3.4
trig _subpos_0 basic 73.5 81.6 60
trig _subpos_-1 basic 73.2 65.6 48
win _sf_0s basic 73 100 73
win _sf_50w basic 72.7 100 72.7
pred_lem IGR-direct 72.3 2.6 1.9
has_relat _sl GR-bigr-direct 72.1 35 25
win _sf_1s basic 71.7 100 71.7
trig _subpos_+1 basic 71.3 82.9 59.1
big_subpos_+1 basic 70.8 97 68.7
has_relat _s GR-bigr-direct 70.7 15.7 111
has_relat _nnl GR-bigr-direct 70.4 10.2 7.2
pred_Prep_pcomp-n_N _word indirect 70 0.5 0.4
has_relat _nn GR-bigr-direct 69.6 2.4 1.7
pred_word IGR-direct 69.2 1.3 0.9
detl _word IGR-direct 69.1 27.9 19.3
detl _lem IGR-direct 68.9 28.5 19.6
s_lem IGR-direct 68.8 4.7 3.2
has_relat _subjl GR-bigr-direct 68.8 4.1 2.8
has_relat _mod GR-bigr-direct 66.7 1.6 1.1
has_relat _mod_withl GR-bigr-direct 66.7 0.6 0.4
has_relat _comp1_C.i_V indirect 66.7 0.6 0.4
trig _pos_+1 basic 66.6 96.7 64.4
trig _pos_0 basic 66.3 97.3 64.5

Contin ued on next page
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Table B.9: Results in Semcor for the whole set of features disambiguating

nouns (sorted by precision).
Feature Type | Precision Coverage | Recall
trig _pos_-1 basic 64.8 82.8 53.7
big_pos_+1 basic 64.2 99.6 63.9
has_relat _-mod_Prep_pcomp-n_N indirect 63.5 26.4 16.8
s_synset IGR-direct 63.2 3.6 2.3
big_subpos_-1 basic 63 97.5 61.4
has_relat _detl GR-bigr-direct 61.5 304 18.7
has_relat _pnmod] GR-bigr-direct 60.8 0.5 0.3
has_relat _by-subj_Prep_pcomp-n_N indirect 60.8 0.5 0.3
has_relat _modl GR-bigr-direct 59.1 22.3 13.2
has_relat _conj GR-bigr-direct 58.6 34 2
big_pos_-1 basic 58.4 99.3 58
has_relat _-mod_Prep_pcomp-n_NI indirect 56 20.9 11.7
has_relat _conjl GR-bigr-direct 55.8 3.7 2.1
has_relat _pcomp-n GR-bigr-direct 52.1 34.4 17.9
has_relat _-mod_onl GR-bigr-direct 50.2 0.4 0.2
has_relat _lex-mod GR-bigr-direct 49.6 0.8 0.4
has_relat _appol GR-bigr-direct 43.2 0.7 0.3
has_relat _mod_tol GR-bigr-direct 42.9 0.7 0.3
prel _lem IGR-direct 33.3 0.3 0.1
prel _word IGR-direct 33.3 0.3 0.1
has_relat _prel GR-bigr-direct 33.3 0.3 0.1
compl_Prep_pcomp-n_N_synset indirect 33.3 0.3 0.1
has_relat _mod_atl GR-bigr-direct 294 0.7 0.2
has_relat _mod_Prep_pcomp-c_C_i_VI indirect 20.3 0.5 0.1
has_relat _pred _Prep _pcomp-n_N indirect 16.7 0.6 0.1
pred_Prep_pcomp-n_N_lem indirect 16.7 0.6 0.1
pred_Prep_pcomp-n_N _synset indirect 16.7 0.6 0.1

Table B.10: Results in Semcor for the whole set of features disambiguating

verbs (sorted by precision).
Feature Typ e | Precision Coverage | Recall
has_relat _descl GR-bigr-direct 100 0.3 0.3
conj_synset IGR-direct 100 0.2 0.2
conjl _lem IGR-direct 100 0.2 0.2
conjl _synset IGR-direct 100 0.2 0.2
guestl_synset IGR-direct 100 0.2 0.2
has_relat _-mod_atl GR-bigr-direct 100 0.2 0.2
has_relat_mod_Inl GR-bigr-direct 100 0.2 0.2
mod_C_i_V _synset indirect 84.6 1 0.8
sc_lem IGR-direct 83.3 0.5 0.4
sc_.word IGR-direct 83.3 0.5 0.4
sc_synset IGR-direct 80 0.4 0.3
mod_C_._V_lem indirect 75.2 1.6 12
modl _synset IGR-direct 73.4 1.2 0.9
has_relat_mod_C_i_V indirect 68.7 6.7 4.6

Contin ued on next page
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Table B.10: Results in Semcor for the whole set of features disambiguating

verbs (sorted by precision).

Feature Typ e | Precision Coverage Recall

has_relat _-mod_aboutl GR-bigr-direct 68.4 15 1
has_relat _by-subj_byl GR-bigr-direct 66.7 0.5 0.3
has_relat _by-subj_Prep _pcomp-n_NI indirect 66.7 0.5 0.3
has_relat _vrel GR-bigr-direct 63.4 0.9 0.6
fc_C_i_V _synset indirect 57.5 15 0.9
has_relat _amodl| GR-bigr-direct 56.7 11.3 6.4
fc_C.i_VI _word indirect 56.7 7.1 4
has_relat -fc_C_i_VI indirect 56.6 16.4 9.3
mod_C_i_V word indirect 56.6 11 0.6
modI _word IGR-direct 55.8 1.9 11
fc_C_.i_V _word indirect 55.4 14 0.8
amodI| _synset IGR-direct 54.8 7.8 4.3
trig _wf_0 basic 54.3 28.7 15.6
amodI| _lem IGR-direct 54 8.3 4.5
amodI _word IGR-direct 54 8.3 45
sl_synset IGR-direct 53.7 5.5 3
trig _lem_0 basic 53.3 315 16.8
mod_Prep_pcomp-n_NI _word indirect 52.8 1.8 1
trig _lem_-1 basic 52.7 25.2 13.3
has_relat _sc GR-bigr-direct 52.2 2.4 1.3
conj_lem IGR-direct 51.8 0.3 0.2
modl _lem IGR-direct 51.7 2.1 11
fc_C_i_VI llem indirect 51.6 8.8 4.5
has_relat _.comp1_C.i_V indirect 50.8 6.9 3.5
subjl _lem IGR-direct 50.7 40.8 20.7
subjl -word IGR-direct 50.7 36.9 18.7
big_lem_-1 basic 50.2 75.9 38.1
trig _wf_+1 basic 50 27.3 13.7
pred_C_i_V _word indirect 50 0.2 0.1
win _lem_20w basic 49.9 100 49.9
win _lem_50w basic 49.9 100 49.9
trig -wf_-1 basic 49.9 22.6 11.3
win _hyper_0s basic 49.8 89.6 44.6
win _syn_50w basic 49.5 100 49.5
sl_lem IGR-direct 49.2 39 19.2
win _anc_0s basic 49.1 93.2 45.8
win _anc3_0s basic 49 92.9 455
win -wf_3w basic 48.9 61.7 30.2
win _syn_1s basic 48.8 98.8 48.2
big_wf_-1 basic 48.8 62.8 30.6
trig _lem_+1 basic 48.7 30.7 15
win _lem_0s basic 48.6 100 48.6
win _syn_20w basic 48.6 97.8 47.5
win _lem_4w basic 48.5 100 48.5
win _wf_4w basic 48.5 75.3 36.5
sl_word IGR-direct 48.5 35.2 17.1
objl _synset IGR-direct 48.5 7.2 35
subjl _synset IGR-direct 48.3 6.3 3
win _wf_0s basic 48.1 94.8 45.6
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Table B.10: Results in Semcor for the whole set of features disambiguating
verbs (sorted by precision).
Feature Type | Precision Coverage | Recall
win _syn_Os basic 48 81l.1 38.9
win _lem_1s basic 47.7 100 47.7
win _syn_4w basic 47.6 47.9 22.8
aux! _lem IGR-direct 47.4 20.8 9.9
aux! _word IGR-direct 47.4 20.8 9.9
GR-ngram3 GR-ngram 47.2 66.4 31.3
big_lem_+1 basic 46.4 74.1 34.4
obj2l _synset IGR-direct 46.4 2.2 1
has_relat _auxI| GR-bigr-direct 46.2 23 10.6
win _sf_4w basic 46.1 100 46.1
obj2l _lem IGR-direct 45.9 2.9 1.3
win _level4_0s basic 45.6 85.9 39.2
win _sf_-50w basic 45.4 100 45.4
win _sf_20w basic 45.3 100 453
GR-ngraml GR-ngram 45.3 99.7 45.2
big_wf_+1 basic 45 64.8 29.2
win _sf_1s basic 44.9 100 44.9
win _sf_0s basic 44.8 98.8 44.3
has_relat _subjl GR-bigr-direct 44.8 62 27.8
trig _subpos_0 basic 44.7 80.8 36.1
big _subpos_+1 basic 44.3 98 43.4
has_relat _sl GR-bigr-direct 44.3 60.3 26.7
big _subpos_-1 basic 44.2 98.5 43.5
has_relat _mod_Prep_pcomp-c_C_.i_V indirect 43.9 1.2 0.5
has_relat_mod_asl GR-bigr-direct 43.6 0.5 0.2
big_pos_+1 basic 43.3 99.6 43.1
trig _pos_0 basic 43.1 98 42.2
trig _subpos_-1 basic 42.7 80.8 34.5
big_pos_-1 basic 42.6 99.5 42.4
trig _pos_-1 basic 42.2 92.2 38.9
has_relat _mod_bylI GR-bigr-direct 42.2 0.6 0.3
GR-ngram?2 GR-ngram 41.9 92.7 38.8
trig _pos_+1 basic 41.8 97.6 40.8
has_relat _-mod_ofl GR-bigr-direct 41.6 4.6 1.9
bel_lem IGR-direct 414 5.8 24
bel_word IGR-direct 41.4 5.8 24
trig _subpos_+1 basic 41.2 82.8 34.1
objl _lem IGR-direct 40.5 23.4 9.5
compl_C_i_V _synset indirect 40.1 0.8 0.3
fc_C.i_V_lem indirect 39.6 1.9 0.8
obj2l _word IGR-direct 394 2.6 1
has_relat fc_.C_i_V indirect 39.2 6.2 24
fc_C_i_VI _synset indirect 38.6 5.8 2.2
mod_Prep_pcomp-n_NI _lem indirect 38.4 25 1
objl _word IGR-direct 38.3 20.3 7.8
havel_lem IGR-direct 36.4 4.8 1.7
havel_word IGR-direct 36.4 4.8 1.7
has_relat _s.CN cn_C.i_V indirect 34.2 1.8 0.6
has_relat_s_.CN _cn_C_i_VI indirect 33.8 0.6 0.2
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Table B.10: Results in Semcor for the whole set of features disambiguating
verbs (sorted by precision).

Feature Typ e | Precision Coverage Recall

has_relat _-mod_onl GR-bigr-direct 33.3 0.5 0.2
has_relat _mod_intol GR-bigr-direct 33.3 0.2 0.1
compl_C.i_V_lem indirect 32.9 3.3 11
has_relat _bel GR-bigr-direct 30.1 6.2 1.9
compl_C.i_V _word indirect 30.1 2.8 0.8
has_relat _modl GR-bigr-direct 28.6 7.2 2.1
has_relat _mod_Prep _pcomp-n_NI indirect 27.8 17.3 4.8
has_relat _havel GR-bigr-direct 27.4 5.1 1.4
has_relat _conj GR-bigr-direct 24.3 2 0.5
has_relat_mod_C_i_VI indirect 21.3 34 0.7
has_relat _objl GR-bigr-direct 20 52.1 104
has_relat _mod_inl GR-bigr-direct 19.2 3.1 0.6
mod_C_i_VI _synset indirect 16.7 0.5 0.1
has_relat _conjl GR-bigr-direct 15.3 2.2 0.3
guestl_lem IGR-direct 14.7 2.6 0.4
guestl _word IGR-direct 14.7 2.6 0.4
mod_C_i_VI _word indirect 14.3 0.6 0.1
mod_Prep_pcomp-n_NI _synset indirect 13.3 1.2 0.2
pred_C_.i_V_lem indirect 12 0.6 0.1
mod_C_i_VI _lem indirect 11.1 0.7 0.1
has_relat _pred_C_.i_V indirect 9.5 0.7 0.1
has_relat _guestl GR-bigr-direct 6.2 6.2 0.4
has_relat _-mod_forl GR-bigr-direct 5.6 1 0.1
has_relat _mod_tol GR-bigr-direct 2.8 2.3 0.1
has_relat _obj2I GR-bigr-direct 14 9.6 0.1

Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).

Feature Typ e | Precision Coverage | Recall
Win _syn_50w basic 79.9 99.9 79.8
Win _lem 50w basic 78.8 100 78.8
win_syn_1s basic 79.9 98.5 78.7
win _lem_0s basic 78.3 100 78.3
win _lem_1s basic 78.1 100 78.1
win _lem_20w basic 77.8 100 77.8
win _syn_20w basic 79.8 97.4 77.7
win _lem_4w basic 77.4 99.8 77.2
win _anc_0s basic 77.1 97.2 74.9
win _anc3_0s basic 76.8 97.1 74.6
win _wf_0s basic 76.6 97.4 74.6
win _sf_20w basic 74.5 100 74.5
win _sf_4w basic 74.2 99.9 74.1
win _sf_0s basic 73 100 73
win _sf_50w basic 72.7 100 72.7
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Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).
Feature Type | Precision Coverage | Recall
win _sf_1s basic 71.7 100 71.7
win _hyper_0s basic 76.5 93.1 71.2
win _level4_0s basic 75.9 91 69.1
big_subpos_+1 basic 70.8 97 68.7
win _syn_0s basic 78.2 84 65.7
trig _pos_0 basic 66.3 97.3 64.5
trig _pos_+1 basic 66.6 96.7 64.4
big_pos_+1 basic 64.2 99.6 63.9
big_subpos_-1 basic 63 97.5 61.4
trig _subpos_0 basic 73.5 81.6 60
trig _subpos_+1 basic 71.3 82.9 59.1
win -wf_4w basic 82.1 71.2 58.5
big_pos_-1 basic 58.4 99.3 58
big_lem_+1 basic 84.6 65.2 55.2
trig _pos_-1 basic 64.8 82.8 53.7
big_wf_+1 basic 84.9 62.3 52.9
big_lem_-1 basic 74 70.4 52.1
win _wf_3w basic 83.3 59.4 49.5
trig _subpos_-1 basic 73.2 65.6 48
big_wf_-1 basic 74 63.3 46.8
win _syn_4w basic 84.8 41.3 35
pcomp-n_lem IGR-direct 75.1 30 225
pcomp-n_word IGR-direct 75.1 30 225
trig _lem_+1 basic 87.8 24.8 21.8
trig _lem_0 basic 82.4 25.6 211
trig _wf_0 basic 83.1 25.3 21
trig _wf_+1 basic 88.1 23.7 20.9
detl _lem IGR-direct 68.9 28.5 19.6
detl _word IGR-direct 69.1 27.9 19.3
has_relat _detl GR-bigr-direct 61.5 30.4 18.7
Has_relat _pcomp-n GR-bigr-direct 52.1 34.4 17.9
has_relat _obj GR-bigr-direct 78.9 21.3 16.8
has_relat _-mod_Prep_pcomp-n_N indirect 63.5 26.4 16.8
trig _lem_-1 basic 78.7 17.3 13.6
trig _wf_-1 basic 79.1 16.7 13.2
has_relat _modl GR-bigr-direct 59.1 22.3 13.2
has_relat _subj GR-bigr-direct 75.4 16.2 12.2
has_relat _genl GR-bigr-direct 77.1 15.7 12.1
has_relat _mod_Prep_pcomp-n_NI indirect 56 20.9 11.7
has_relat _s GR-bigr-direct 70.7 15.7 11.1
genl_lem IGR-direct 84 12 10.1
genl_word IGR-direct 83.6 11.8 9.9
has_relat _mod _ofl GR-bigr-direct 80 10.9 8.7
modl _lem IGR-direct 92.6 8.5 7.9
modI| _word IGR-direct 92.6 8.5 7.9
has_relat _nnl GR-bigr-direct 70.4 10.2 7.2
modI _synset IGR-direct 94.1 7.1 6.7
obj_lem IGR-direct 93.3 6.1 5.7
obj_word IGR-direct 95.9 5.1 4.9
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Table B.11: Results in Semcor for the whole set of features disambiguating

nouns (sorted by recall).

Feature Type | Precision Coverage | Recall

obj_synset IGR-direct 88.7 5.5 49
mod_Prep_pcomp-n_N_lem indirect 94.7 4 3.8
nnl _lem IGR-direct 85.7 4.4 3.8
subj_lem IGR-direct 75 5 3.8
nnl _word IGR-direct 85.4 4.3 3.7
subj_synset IGR-direct 73.8 4.6 3.4
Mod_Prep_pcomp-n_N _word indirect 100 3.3 3.3
s_lem IGR-direct 68.8 4.7 3.2
Mod_Prep_pcomp-n_N_synset indirect 100 3.1 3.1
mod_Prep_pcomp-n_NI _lem indirect 90 3.1 2.8
has_relat _subjl GR-bigr-direct 68.8 4.1 2.8
mod_Prep_pcomp-n_NI _synset indirect 96.3 2.8 2.7
nnl _synset IGR-direct 86.8 3.1 2.7
subj_word IGR-direct 74.2 3.7 2.7
s_.word IGR-direct 74.1 3.7 2.7
has_relat _sl GR-bigr-direct 72.1 35 25
s_synset IGR-direct 63.2 3.6 2.3
mod_Prep _pcomp-n_NI _word indirect 91.4 2.4 2.2
has_relat _pred GR-bigr-direct 75 2.9 2.2
has_relat _mod._inl GR-bigr-direct 78.7 2.7 2.1
has_relat _objl GR-bigr-direct 74.2 2.8 2.1
has_relat _conjl GR-bigr-direct 55.8 3.7 2.1
has_relat _conj GR-bigr-direct 58.6 3.4 2
pred_lem IGR-direct 72.3 2.6 1.9
has_relat _nn GR-bigr-direct 69.6 2.4 1.7
pred_synset IGR-direct 76.7 1.8 14
detl _synset IGR-direct 85.6 14 12
has_relat _.comp1_Prep_pcomp-n_N indirect 78.4 15 1.2
has_relat _.comp1_ofl GR-bigr-direct 76.9 14 11
has_relat _mod GR-bigr-direct 66.7 1.6 1.1
Mod_lem IGR-direct 100 1 1
Mo d_synset IGR-direct 100 1 1
mod_word IGR-direct 100 1 1
has_relat _postl GR-bigr-direct 81.5 1.2 1
has_relat _compl_Prep_pcomp-n_NI indirect 75 1.3 1
pred_word IGR-direct 69.2 1.3 0.9
postl _lem IGR-direct 100 0.7 0.7
postl _word IGR-direct 100 0.7 0.7
has_relat_mod_C_i_VI indirect 100 0.7 0.7
sl_lem IGR-direct 100 0.6 0.6
sl_synset IGR-direct 100 0.6 0.6
sl_word IGR-direct 100 0.6 0.6
subjl _lem IGR-direct 100 0.6 0.6
subjl _synset IGR-direct 100 0.6 0.6
subjl _word IGR-direct 100 0.6 0.6
has_relat_mod_perl GR-bigr-direct 100 0.6 0.6
postl _synset IGR-direct 100 0.5 0.5
has_relat _guestl GR-bigr-direct 100 0.5 0.5
has_relat _mod_froml GR-bigr-direct 100 0.5 0.5
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Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).

Feature Type | Precision Coverage | Recall

compl_Prep_pcomp-n_N_lem indirect 83.3 0.6 0.5
compl_Prep_pcomp-n_N_word indirect 83.3 0.6 0.5
genl_synset IGR-direct 100 0.4 0.4
objl _lem IGR-direct 100 0.4 0.4
objl _word IGR-direct 100 0.4 0.4
has_relat _vrell GR-bigr-direct 100 0.4 0.4
pred_Prep_pcomp-n_N _word indirect 70 0.5 0.4
has_relat _mod_withl GR-bigr-direct 66.7 0.6 0.4
has_relat _.comp1_C_.i_V indirect 66.7 0.6 0.4
has_relat _lex-mod GR-bigr-direct 49.6 0.8 0.4
has_relat _-mod_forl GR-bigr-direct 100 0.3 0.3
has_relat _pnmod]l GR-bigr-direct 60.8 0.5 0.3
has_relat _by-subj_Prep_pcomp-n_N indirect 60.8 0.5 0.3
has_relat _appol GR-bigr-direct 43.2 0.7 0.3
has_relat _mod_tol GR-bigr-direct 42.9 0.7 0.3
conjl _lem IGR-direct 100 0.2 0.2
conjl _synset IGR-direct 100 0.2 0.2
guestl_lem IGR-direct 100 0.2 0.2
guestl _word IGR-direct 100 0.2 0.2
nn_lem IGR-direct 100 0.2 0.2
nn_synset IGR-direct 100 0.2 0.2
nn_word IGR-direct 100 0.2 0.2
possl_lem IGR-direct 100 0.2 0.2
possl_-word IGR-direct 100 0.2 0.2
vrell lem IGR-direct 100 0.2 0.2
vrell _synset IGR-direct 100 0.2 0.2
vrell _word IGR-direct 100 0.2 0.2
has_relat _appo GR-bigr-direct 100 0.2 0.2
has_relat _gen GR-bigr-direct 100 0.2 0.2
has_relat _mod_asl GR-bigr-direct 100 0.2 0.2
has_relat _mod_outl GR-bigr-direct 100 0.2 0.2
has_relat _possl GR-bigr-direct 100 0.2 0.2
compl_C.i_V_lem indirect 100 0.2 0.2
compl_C.i_V _synset indirect 100 0.2 0.2
compl_C.i_V _word indirect 100 0.2 0.2
compl_Prep_pcomp-n_NI_lem indirect 100 0.2 0.2
compl_Prep _pcomp-n_NI _synset indirect 100 0.2 0.2
compl_Prep_pcomp-n_NI_word indirect 100 0.2 0.2
has_relat _.s_.CN _cn_C_i_VI indirect 100 0.2 0.2
has_relat _mod_onl GR-bigr-direct 50.2 0.4 0.2
has_relat _mod_atl GR-bigr-direct 294 0.7 0.2
prel _lem IGR-direct 33.3 0.3 0.1
prel _word IGR-direct 33.3 0.3 0.1
has_relat _prel GR-bigr-direct 33.3 0.3 0.1
compl_Prep_pcomp-n_N_synset indirect 33.3 0.3 0.1
has_relat_mod_Prep _pcomp-c_C_i_VI indirect 20.3 0.5 0.1
has_relat _pred_Prep_pcomp-n_N indirect 16.7 0.6 0.1
pred_Prep_pcomp-n_N_lem indirect 16.7 0.6 0.1
pred_Prep_pcomp-n_N _synset indirect 16.7 0.6 0.1
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Table B.12: Results in Semcor for the whole set of features disambiguating

verbs (sorted by recall).

Feature Type | Precision Coverage | Recall

win _lem_20w basic 49.9 100 49.9
win _lem_50w basic 49.9 100 49.9
win _syn_50w basic 49.5 100 49.5
win _lem_0s basic 48.6 100 48.6
win _lem_4w basic 48.5 100 48.5
win _syn_1s basic 48.8 98.8 48.2
win _lem_1s basic 47.7 100 47.7
win _syn_20w basic 48.6 97.8 47.5
win _sf_4w basic 46.1 100 46.1
win _anc_0s basic 49.1 93.2 45.8
win _wf_0s basic 48.1 94.8 45.6
win _anc3_0s basic 49 92.9 45.5
win _sf_50w basic 45.4 100 45.4
win _sf_20w basic 453 100 453
GR-ngraml GR-ngram 45.3 99.7 45.2
win _sf_1s basic 44.9 100 44.9
win _hyper_0s basic 49.8 89.6 44.6
win _sf_0s basic 44.8 98.8 44.3
big_subpos_-1 basic 44.2 98.5 43.5
big_subpos_+1 basic 44.3 98 43.4
big_pos_+1 basic 43.3 99.6 43.1
big_pos_-1 basic 42.6 99.5 42.4
trig _pos_0 basic 43.1 98 42.2
trig _pos_+1 basic 41.8 97.6 40.8
win _level4_0s basic 45.6 85.9 39.2
win _syn_0s basic 48 81.1 38.9
trig _pos_-1 basic 42.2 92.2 38.9
GR-ngram2 GR-ngram 41.9 92.7 38.8
big_lem_-1 basic 50.2 75.9 38.1
win _wf_4w basic 48.5 75.3 36.5
trig _subpos_0 basic 44.7 80.8 36.1
trig _subpos_-1 basic 42.7 80.8 34.5
big_lem_+1 basic 46.4 74.1 34.4
trig _subpos_+1 basic 41.2 82.8 34.1
GR-ngram3 GR-ngram 47.2 66.4 31.3
big_wf_-1 basic 48.8 62.8 30.6
win -wf_3w basic 48.9 61.7 30.2
big_wf_+1 basic 45 64.8 29.2
has_relat _subjl GR-bigr-direct 44.8 62 27.8
has_relat _sl GR-bigr-direct 44.3 60.3 26.7
win _syn_4w basic 47.6 47.9 22.8
subjl _lem IGR-direct 50.7 40.8 20.7
sl_lem IGR-direct 49.2 39 19.2
subjl -word IGR-direct 50.7 36.9 18.7
sl_word IGR-direct 48.5 35.2 17.1
trig _lem_0 basic 53.3 315 16.8
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Table B.12: Results in Semcor for the whole set of features disambiguating
verbs (sorted by recall).
Feature Type | Precision Coverage | Recall
trig .wf_0 basic 54.3 28.7 15.6
trig _lem_+1 basic 48.7 30.7 15
trig wf _+1 basic 50 27.3 13.7
trig _lem_-1 basic 52.7 25.2 13.3
trig wf -1 basic 49.9 22.6 11.3
has_relat _auxI| GR-bigr-direct 46.2 23 10.6
has_relat _objl GR-bigr-direct 20 52.1 104
aux! _lem IGR-direct 47.4 20.8 9.9
aux! _word IGR-direct 47.4 20.8 9.9
objl _lem IGR-direct 40.5 234 9.5
has_relat -fc_C_i_VI indirect 56.6 16.4 9.3
objl _word IGR-direct 38.3 20.3 7.8
has_relat _amodl GR-bigr-direct 56.7 11.3 6.4
has_relat _-mod_Prep_pcomp-n_NI indirect 27.8 17.3 4.8
has_relat_mod_C_i_V indirect 68.7 6.7 4.6
amodI _lem IGR-direct 54 8.3 45
amod| _word IGR-direct 54 8.3 45
fc_C.i_VI _lem indirect 51.6 8.8 45
amodl _synset IGR-direct 54.8 7.8 4.3
fc_C.i_VI _-word indirect 56.7 7.1 4
has_relat _comp1_C_.i_V indirect 50.8 6.9 3.5
objl _synset IGR-direct 48.5 7.2 3.5
sl_synset IGR-direct 53.7 5.5 3
subjl _synset IGR-direct 48.3 6.3 3
bel_lem IGR-direct 41.4 5.8 24
bel_word IGR-direct 41.4 5.8 24
has_relat fc_C_.i_V indirect 39.2 6.2 24
fc_C_i_VI _synset indirect 38.6 5.8 2.2
has_relat_modl| GR-bigr-direct 28.6 7.2 2.1
has_relat _-mod_ofl GR-bigr-direct 41.6 4.6 1.9
has_relat _bel GR-bigr-direct 30.1 6.2 1.9
havel_lem IGR-direct 36.4 4.8 1.7
havel_word IGR-direct 36.4 4.8 1.7
has_relat _havel GR-bigr-direct 27.4 5.1 1.4
has_relat _sc GR-bigr-direct 52.2 2.4 1.3
obj2l _lem IGR-direct 45.9 2.9 1.3
mod_C_i_V_lem indirect 75.2 1.6 1.2
modI _word IGR-direct 55.8 1.9 1.1
modl _lem IGR-direct 51.7 21 1.1
compl_C.i_V_lem indirect 32.9 3.3 1.1
has_relat _-mod_aboutl GR-bigr-direct 68.4 15 1
mod_Prep_pcomp-n_NI _word indirect 52.8 1.8 1
obj2l _synset IGR-direct 46.4 2.2 1
obj2l _word IGR-direct 394 2.6 1
mod_Prep_pcomp-n_NI _lem indirect 38.4 25 1
modl _synset IGR-direct 73.4 1.2 0.9
fc_C.i_V _synset indirect 57.5 15 0.9
mod_C_i_V _synset indirect 84.6 1 0.8
fc_C_i_V_word indirect 55.4 14 0.8
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Table B.12: Results in Semcor for the whole set of features disambiguating

verbs (sorted by recall).

Feature Typ e | Precision Coverage Recall

fc_.C._V_lem indirect 39.6 1.9 0.8
compl_C.i_V _word indirect 30.1 2.8 0.8
has_relat_mod_C_i_VI indirect 21.3 34 0.7
has_relat _vrel GR-bigr-direct 63.4 0.9 0.6
mod_C_i_V -word indirect 56.6 1.1 0.6
has_relat _.s.CN _cn_C_i_V indirect 34.2 1.8 0.6
has_relat _mod_inl GR-bigr-direct 19.2 3.1 0.6
has_relat_mod_Prep_pcomp-c_C_i_V indirect 43.9 1.2 0.5
has_relat _conj GR-bigr-direct 24.3 2 0.5
sclem IGR-direct 83.3 0.5 0.4
sc.word IGR-direct 83.3 0.5 0.4
guestl_lem IGR-direct 14.7 2.6 0.4
guestl _word IGR-direct 14.7 2.6 0.4
has_relat _guestl GR-bigr-direct 6.2 6.2 0.4
has_relat _descl GR-bigr-direct 100 0.3 0.3
sc_synset IGR-direct 80 0.4 0.3
has_relat _by-subj_byl GR-bigr-direct 66.7 0.5 0.3
has_relat _by-subj_Prep_pcomp-n_NI indirect 66.7 0.5 0.3
has_relat _mod_byl GR-bigr-direct 42.2 0.6 0.3
compl_C.i_V _synset indirect 40.1 0.8 0.3
has_relat _conjl GR-bigr-direct 15.3 2.2 0.3
conj_synset IGR-direct 100 0.2 0.2
conjl _lem IGR-direct 100 0.2 0.2
conjl _synset IGR-direct 100 0.2 0.2
guestl _synset IGR-direct 100 0.2 0.2
has_relat _mod_atl GR-bigr-direct 100 0.2 0.2
has_relat _mod_Inl GR-bigr-direct 100 0.2 0.2
conj_lem IGR-direct 51.8 0.3 0.2
has_relat_mod_asl GR-bigr-direct 43.6 0.5 0.2
has_relat .s.CN_cn_C_i_VI indirect 33.8 0.6 0.2
has_relat _-mod_onl GR-bigr-direct 33.3 0.5 0.2
mod_Prep_pcomp-n_NI _synset indirect 13.3 1.2 0.2
pred_C_i_V word indirect 50 0.2 0.1
has_relat _mod_intol GR-bigr-direct 33.3 0.2 0.1
mod_C_i_VI _synset indirect 16.7 0.5 0.1
mod_C_i_VI _word indirect 14.3 0.6 0.1
pred_C_.i_V_lem indirect 12 0.6 0.1
mod_C_i_VI _lem indirect 11.1 0.7 0.1
has_relat _pred_C_i_V indirect 9.5 0.7 0.1
has_relat _mod_forl GR-bigr-direct 5.6 1 0.1
has_relat _mod_tol GR-bigr-direct 2.8 2.3 0.1
has_relat _obj2I GR-bigr-direct 14 9.6 0.1




